RESUMEN
Transfer RNAs (tRNAs) are small adaptor RNAs essential for mRNA translation. Alterations in the cellular tRNA population can directly affect mRNA decoding rates and translational efficiency during cancer development and progression. To evaluate changes in the composition of the tRNA pool, multiple sequencing approaches have been developed to overcome reverse transcription blocks caused by the stable structures of these molecules and their numerous base modifications. However, it remains unclear whether current sequencing protocols faithfully capture tRNAs existing in cells or tissues. This is specifically challenging for clinical tissue samples that often present variable RNA qualities. For this reason, we developed ALL-tRNAseq, which combines the highly processive MarathonRT and RNA demethylation for the robust assessment of tRNA expression, together with a randomized adapter ligation strategy prior to reverse transcription to assess tRNA fragmentation levels in both cell lines and tissues. Incorporation of tRNA fragments not only informed on sample integrity but also significantly improved tRNA profiling of tissue samples. Our data showed that our profiling strategy effectively improves classification of oncogenic signatures in glioblastoma and diffuse large B-cell lymphoma tissues, particularly for samples presenting higher levels of RNA fragmentation, further highlighting the utility of ALL-tRNAseq for translational research.
Asunto(s)
Biosíntesis de Proteínas , ARN de Transferencia , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN Mensajero/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodosRESUMEN
Despite the diversity of liquid biopsy transcriptomic repertoire, numerous studies often exploit only a single RNA type signature for diagnostic biomarker potential. This frequently results in insufficient sensitivity and specificity necessary to reach diagnostic utility. Combinatorial biomarker approaches may offer a more reliable diagnosis. Here, we investigated the synergistic contributions of circRNA and mRNA signatures derived from blood platelets as biomarkers for lung cancer detection. We developed a comprehensive bioinformatics pipeline permitting an analysis of platelet-circRNA and mRNA derived from non-cancer individuals and lung cancer patients. An optimal selected signature is then used to generate the predictive classification model using machine learning algorithm. Using an individual signature of 21 circRNA and 28 mRNA, the predictive models reached an area under the curve (AUC) of 0.88 and 0.81, respectively. Importantly, combinatorial analysis including both types of RNAs resulted in an 8-target signature (6 mRNA and 2 circRNA), enhancing the differentiation of lung cancer from controls (AUC of 0.92). Additionally, we identified five biomarkers potentially specific for early-stage detection of lung cancer. Our proof-of-concept study presents the first multi-analyte-based approach for the analysis of platelets-derived biomarkers, providing a potential combinatorial diagnostic signature for lung cancer detection.
Asunto(s)
Neoplasias Pulmonares , ARN Circular , Humanos , ARN Circular/genética , ARN Mensajero/genética , Plaquetas/patología , Biomarcadores , Neoplasias Pulmonares/genética , Biomarcadores de Tumor/genéticaRESUMEN
MiRNAs are important regulators of gene expression and are frequently deregulated under pathologic conditions. They are highly stable in bodily fluids which makes them feasible candidates to become minimally invasive biomarkers. In fact, several studies already proposed circulating miRNA-based biomarkers for different types of neoplastic, cardiovascular and degenerative diseases. However, many of these studies rely on small RNA sequencing experiments that are based on different RNA extraction and processing protocols, rendering results incomparable. We generated liqDB, a database for liquid biopsy small RNA sequencing profiles that provides users with meaningful information to guide their small RNA liquid biopsy research and to overcome technical and conceptual problems. By means of a user-friendly web interface, miRNA expression profiles from 1607 manually annotated samples can be queried and explored at different levels. Result pages include downloadable expression matrices, differential expression analysis, most stably expressed miRNAs, cluster analysis and relevant visualizations by means of boxplots and heatmaps. We anticipate that liqDB will be a useful tool in liquid biopsy research as it provides a consistently annotated large compilation of experiments together with tools for reproducible analysis, comparison and hypothesis generation. LiqDB is available at http://bioinfo5.ugr.es/liqdb.
Asunto(s)
Ácidos Nucleicos Libres de Células , Biología Computacional/métodos , Bases de Datos Genéticas , ARN Pequeño no Traducido , Algoritmos , Perfilación de la Expresión Génica/métodos , Biopsia Líquida/métodos , Programas Informáticos , Diseño de Software , Interfaz Usuario-Computador , Navegador WebRESUMEN
Cell-free microRNA (miRNA) in biofluids released by tumors in either protein or vesicle-bound form, represent promising minimally-invasive cancer biomarkers. However, a highly abundant non-tumor background in human plasma and serum complicates the discovery and detection of tumor-selective circulating miRNAs. We performed small RNA sequencing on serum and plasma RNA from Nasopharyngeal Carcinoma (NPC) patients. Collectively, Epstein Barr virus-encoded miRNAs, more so than endogenous miRNAs, signify presence of NPC. However, RNAseq-based EBV miRNA profiles differ between NPC patients, suggesting inter-tumor heterogeneity or divergent secretory characteristics. We determined with sensitive qRT-PCR assays that EBV miRNAs BART7-3p, BART9-3p and BART13-3p are actively secreted by C666.1 NPC cells bound to extracellular vesicles (EVs) and soluble ribonucleoprotein complexes. Importantly, these miRNAs are expressed in all primary NPC tumor biopsies and readily detected in nasopharyngeal brushings from both early and late-stage NPC patients. Increased levels of BART7-3p, BART9-3p and particularly BART13-3p, distinguish NPC patient sera from healthy controls. Receiver operating characteristic curve analysis using sera from endemic NPC patients, other head and neck cancers and individuals with asymptomatic EBV-infections reveals a superior diagnostic performance of EBV miRNAs over anti-EBNA1 IgA serology and EBV-DNA load (AUC 0.87-0.96 vs 0.86 and 0.66 respectively). The high specificity of circulating EBV-BART13-3p (97%) for NPC detection is in agreement with active secretion from NPC tumor cells. We conclude EV-bound BART13-3p in circulation is a promising, NPC-selective, biomarker that should be considered as part of a screening strategy to identify NPC in endemic regions.
Asunto(s)
Infecciones por Virus de Epstein-Barr/genética , Vesículas Extracelulares/patología , Neoplasias de Cabeza y Cuello/genética , Herpesvirus Humano 4/genética , MicroARNs/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/virología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Infecciones por Virus de Epstein-Barr/patología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Femenino , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/virología , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Nasofaríngeas/patología , Nasofaringe/patología , Nasofaringe/virología , ARN Viral/genética , Adulto JovenRESUMEN
Complex interactions between DNA herpesviruses and host factors determine the establishment of a life-long asymptomatic latent infection. The lymphotropic Epstein-Barr virus (EBV) seems to avoid recognition by innate sensors despite massive transcription of immunostimulatory small RNAs (EBV-EBERs). Here we demonstrate that in latently infected B cells, EBER1 transcripts interact with the lupus antigen (La) ribonucleoprotein, avoiding cytoplasmic RNA sensors. However, in coculture experiments we observed that latent-infected cells trigger antiviral immunity in dendritic cells (DCs) through selective release and transfer of RNA via exosomes. In ex vivo tonsillar cultures, we observed that EBER1-loaded exosomes are preferentially captured and internalized by human plasmacytoid DCs (pDCs) that express the TIM1 phosphatidylserine receptor, a known viral- and exosomal target. Using an EBER-deficient EBV strain, enzymatic removal of 5'ppp, in vitro transcripts, and coculture experiments, we established that 5'pppEBER1 transfer via exosomes drives antiviral immunity in nonpermissive DCs. Lupus erythematosus patients suffer from elevated EBV load and activated antiviral immunity, in particular in skin lesions that are infiltrated with pDCs. We detected high levels of EBER1 RNA in such skin lesions, as well as EBV-microRNAs, but no intact EBV-DNA, linking non-cell-autonomous EBER1 presence with skin inflammation in predisposed individuals. Collectively, our studies indicate that virus-modified exosomes have a physiological role in the host-pathogen stand-off and may promote inflammatory disease.
Asunto(s)
Células Dendríticas/virología , Infecciones por Virus de Epstein-Barr/genética , Exosomas/metabolismo , ARN Viral/metabolismo , Transporte Biológico , Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/genética , Humanos , ProteomaRESUMEN
Liquid biopsy-derived RNA sequencing (lbRNA-seq) exhibits significant promise for clinic-oriented cancer diagnostics due to its non-invasiveness and ease of repeatability. Despite substantial advancements, obstacles like technical artefacts and process standardisation impede seamless clinical integration. Alongside addressing technical aspects such as normalising fluctuating low-input material and establishing a standardised clinical workflow, the lack of result validation using independent datasets remains a critical factor contributing to the often low reproducibility of liquid biopsy-detected biomarkers. Considering the outlined drawbacks, our objective was to establish a workflow/methodology characterised by: 1. Harness the rich diversity of biological features accessible through lbRNA-seq data, encompassing a holistic range of molecular and functional attributes. These components are seamlessly integrated via a Machine Learning-based Ensemble Classification framework, enabling a unified and comprehensive analysis of the intricate information encoded within the data. 2. Implementing and rigorously benchmarking intra-sample normalisation methods to heighten their relevance within clinical settings. 3. Thoroughly assessing its efficacy across independent test sets to ascertain its robustness and potential utility. Using ten datasets from several studies comprising three different sources of biological material, we first show that while the best-performing normalisation methods depend strongly on the dataset and coupled Machine Learning method, the rather simple Counts Per Million method is generally very robust, showing comparable performance to cross-sample methods. Subsequently, we demonstrate that the innovative biofeature types introduced in this study, such as the Fraction of Canonical Transcript, harbour complementary information. Consequently, their inclusion consistently enhances prediction power compared to models relying solely on gene expression-based biofeatures. Finally, we demonstrate that the workflow is robust on completely independent datasets, generally from different labs and/or different protocols. Taken together, the workflow presented here outperforms generally employed methods in prediction accuracy and may hold potential for clinical diagnostics application due to its specific design.
RESUMEN
gamma 1-Herpesviruses such as Epstein-Barr virus (EBV) have a unique ability to amplify virus loads in vivo through latent growth-transforming infection. Whether they, like alpha- and beta-herpesviruses, have been driven to actively evade immune detection of replicative (lytic) infection remains a moot point. We were prompted to readdress this question by recent work (Pudney, V.A., A.M. Leese, A.B. Rickinson, and A.D. Hislop. 2005. J. Exp. Med. 201:349-360; Ressing, M.E., S.E. Keating, D. van Leeuwen, D. Koppers-Lalic, I.Y. Pappworth, E.J.H.J. Wiertz, and M. Rowe. 2005. J. Immunol. 174:6829-6838) showing that, as EBV-infected cells move through the lytic cycle, their susceptibility to EBV-specific CD8(+) T cell recognition falls dramatically, concomitant with a reductions in transporter associated with antigen processing (TAP) function and surface human histocompatibility leukocyte antigen (HLA) class I expression. Screening of genes that are unique to EBV and closely related gamma 1-herpesviruses of Old World primates identified an early EBV lytic cycle gene, BNLF2a, which efficiently blocks antigen-specific CD8(+) T cell recognition through HLA-A-, HLA-B-, and HLA-C-restricting alleles when expressed in target cells in vitro. The small (60-amino acid) BNLF2a protein mediated its effects through interacting with the TAP complex and inhibiting both its peptide- and ATP-binding functions. Furthermore, this targeting of the major histocompatibility complex class I pathway appears to be conserved among the BNLF2a homologues of Old World primate gamma 1-herpesviruses. Thus, even the acquisition of latent cycle genes endowing unique growth-transforming ability has not liberated these agents from evolutionary pressure to evade CD8(+) T cell control over virus replicative foci.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Regulación de la Expresión Génica , Herpesvirus Humano 4/metabolismo , Secuencia de Aminoácidos , Animales , Linfocitos T CD8-positivos/metabolismo , Cercopithecidae , Clonación Molecular , Citometría de Flujo , Antígenos HLA/química , Antígenos HLA/metabolismo , Herpesviridae/metabolismo , Humanos , Sistema Inmunológico/metabolismo , Datos de Secuencia Molecular , Péptidos/química , Homología de Secuencia de AminoácidoRESUMEN
Since the discovery of the Bence Jones protein in the middle to late 1800s and the subsequent identification of the carcinoembryonic antigen and alpha-fetoprotein in the 1970s, it has been demonstrated that the analysis of biofluids is essential to the diagnostic and follow-up processes of cancer [...].
RESUMEN
Background: Platelets are active players in hemostasis, coagulation and also tumorigenesis. The cross-talk between platelets and circulating tumor cells (CTCs) may have various pro-cancer effects, including promoting tumor growth, epithelial-mesenchymal transition (EMT), metastatic cell survival, adhesion, arrest and also pre-metastatic niche and metastasis formation. Interaction with CTCs might alter the platelet transcriptome. However, as CTCs are rare events, the cross-talk between CTCs and platelets is poorly understood. Here, we used our established colon CTC lines to investigate the colon CTC-platelet cross-talk in vitro and its impact on the behavior/phenotype of both cell types. Methods: We exposed platelets isolated from healthy donors to thrombin (positive control) or to conditioned medium from three CTC lines from one patient with colon cancer and then we monitored the morphological and protein expression changes by microscopy and flow cytometry. We then analyzed the transcriptome by RNA-sequencing of platelets indirectly (presence of a Transwell insert) co-cultured with the three CTC lines. We also quantified by reverse transcription-quantitative PCR the expression of genes related to EMT and cancer development in CTCs after direct co-culture (no Transwell insert) with platelets. Results: We observed morphological and transcriptomic changes in platelets upon exposure to CTC conditioned medium and indirect co-culture (secretome). Moreover, the expression levels of genes involved in EMT (p < 0.05) were decreased in CTCs co-cultured with platelets, but not of genes encoding mesenchymal markers (FN1 and SNAI2). The expression levels of genes involved in cancer invasiveness (MYC, VEGFB, IL33, PTGS2, and PTGER2) were increased. Conclusion: For the first time, we studied the CTC-platelet cross-talk using our unique colon CTC lines. Incubation with CTC conditioned medium led to platelet aggregation and activation, supporting the hypothesis that their interaction may contribute to preserve CTC integrity during their journey in the bloodstream. Moreover, co-culture with platelets influenced the expression of several genes involved in invasiveness and EMT maintenance in CTCs.
RESUMEN
Liquid biopsy approaches offer a promising technology for early and minimally invasive cancer detection. Tumor-educated platelets (TEPs) have emerged as a promising liquid biopsy biosource for the detection of various cancer types. In this study, we processed and analyzed the TEPs collected from 466 Non-small Cell Lung Carcinoma (NSCLC) patients and 410 asymptomatic individuals (controls) using the previously established thromboSeq protocol. We developed a novel particle-swarm optimization machine learning algorithm which enabled the selection of an 881 RNA biomarker panel (AUC 0.88). Herein we propose and validate in an independent cohort of samples (n = 558) two approaches for blood samples testing: one with high sensitivity (95% NSCLC detected) and another with high specificity (94% controls detected). Our data explain how TEP-derived spliced RNAs may serve as a biomarker for minimally-invasive clinical blood tests, complement existing imaging tests, and assist the detection and management of lung cancer patients.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Biomarcadores de Tumor/genética , Algoritmos , ARN/metabolismo , Plaquetas/metabolismo , Pruebas HematológicasRESUMEN
The lifelong infection by varicelloviruses is characterized by a fine balance between the host immune response and immune evasion strategies used by these viruses. Virus-derived peptides are presented to cytotoxic T lymphocytes by major histocompatibility complex (MHC) class I molecules. The transporter associated with antigen processing (TAP) transports the peptides from the cytosol into the endoplasmic reticulum, where the loading of MHC-I molecules occurs. The varicelloviruses bovine herpesvirus 1 (BoHV-1), pseudorabies virus, and equid herpesviruses 1 and 4 have been found to encode a UL49.5 protein that inhibits TAP-mediated peptide transport. To investigate to what extent UL49.5-mediated TAP inhibition is conserved within the family of Alphaherpesvirinae, the homologs of another five varicelloviruses, one mardivirus, and one iltovirus were studied. The UL49.5 proteins of BoHV-5, bubaline herpesvirus 1, cervid herpesvirus 1, and felid herpesvirus 1 were identified as potent TAP inhibitors. The varicella-zoster virus and simian varicellovirus UL49.5 proteins fail to block TAP; this is not due to the absence of viral cofactors that might assist in this process, since cells infected with these viruses did not show reduced TAP function either. The UL49.5 homologs of the mardivirus Marek's disease virus 1 and the iltovirus infectious laryngotracheitis virus did not block TAP, suggesting that the capacity to inhibit TAP via UL49.5 has been acquired by varicelloviruses only. A phylogenetic analysis of viruses that inhibit TAP through their UL49.5 proteins reveals an interesting hereditary pattern, pointing toward the presence of this capacity in defined clades within the genus Varicellovirus.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Regulación hacia Abajo , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/veterinaria , Herpesvirus Bovino 1/inmunología , Proteínas del Envoltorio Viral/inmunología , Secuencia de Aminoácidos , Animales , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/virología , Línea Celular , Infecciones por Herpesviridae/virología , Herpesvirus Bovino 1/clasificación , Herpesvirus Bovino 1/genética , Humanos , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Varicellovirus/clasificación , Varicellovirus/genética , Varicellovirus/inmunología , Proteínas del Envoltorio Viral/genéticaRESUMEN
Viruses usually infect a restricted set of host species, and only in rare cases does productive infection occur outside the natural host range. Infection of a new host species can manifest as a distinct disease. In this respect, the use of non-human viruses in clinical therapy may be a cause for concern. It could provide the opportunity for the viruses to adapt to the new host and be transferred to the recipient's relatives or medical caretakers, or even to the normal host species. Such environmental impact is evidently undesirable. To forecast future clinical use of non-human viruses, a literature study was performed to identify the viruses that are being considered for application as therapeutic agents for use in humans. Twenty-seven non-human virus species were identified that are in (pre)clinical development, mainly as oncolytic agents. For risk management, it is essential that the potential environmental consequences are assessed before initiating clinical use, even if the virus is not formally classified as a genetically modified organism. To aid such assessment, each of these viruses was classified in one of five relative environmental risk categories, ranging from "Negligible" to "Very High". Canary pox virus and the Autographa californica baculovirus were assigned a "Negligible" classification, and Seneca Valley virus, murine leukemia virus, and Maraba virus to the "High" category. A complicating factor in the classification is the scarcity of publicly available information on key aspects of virus biology in some species. In such cases the relative environmental risk score was increased as a precaution.
Asunto(s)
Neoplasias/terapia , Viroterapia Oncolítica/efectos adversos , Virus Oncolíticos/patogenicidad , Animales , Ensayos Clínicos como Asunto , Humanos , Virus de la Leucemia Murina/patogenicidad , Picornaviridae/patogenicidad , Rhabdoviridae/patogenicidad , Virosis/transmisiónRESUMEN
Nucleic acids and proteins are shed into the bloodstream by tumor cells and can be exploited as biomarkers for the detection of cancer. In addition, cancer detection biomarkers can also be nontumor-derived, having their origin in other organs and cell types. Hence, liquid biopsies provide a source of direct tumor cell-derived biomolecules and indirect nontumor-derived surrogate markers that circulate in body fluids or are taken up by circulating peripheral blood cells. The capacity of platelets to take up proteins and nucleic acids and alter their megakaryocyte-derived transcripts and proteins in response to external signals makes them one of the richest liquid biopsy biosources. Platelets are the second most abundant cell type in peripheral blood and are routinely isolated through well-established and fast methods in clinical diagnostics but their value as a source of cancer biomarkers is relatively recent. Platelets do not have a nucleus but have a functional spliceosome and protein translation machinery, to process RNA transcripts. Platelets emerge as important repositories of potential cancer biomarkers, including several types of RNAs (mRNA, miRNA, circRNA, lncRNA, and mitochondrial RNA) and proteins, and several preclinical studies have highlighted their potential as a liquid biopsy source for detecting various types and stages of cancer. Here, we address the usability of platelets as a liquid biopsy for the detection of cancer. We describe several studies that support the use of platelet biomarkers in cancer diagnostics and discuss what is still lacking for their implementation into the clinic.
Asunto(s)
Plaquetas/patología , Biopsia Líquida , Neoplasias/sangre , Neoplasias/diagnóstico , Biomarcadores de Tumor/sangre , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias/genética , Neoplasias/patología , Investigación Biomédica TraslacionalRESUMEN
Tools for microRNA (miR) sequencing data analyses are broadly used in biomedical research. However, the complexity of computational approaches still remains a challenge for biologists with scarce experience in data analytics and bioinformatics. Here, we present miRGalaxy, a Galaxy-based framework for comprehensive analysis of miRs and their sequence variants-miR isoforms (isomiRs). Though isomiRs are commonly reported in deep-sequencing experiments, their detailed structure complexity and specific differential expression (DE) remain not fully examined by the majority of the available analysis tools. miRGalaxy encompasses biologist-user-friendly tools and workflows dedicated to the analysis of the isomiR-ome and its complex behavior in various biological samples. miRGalaxy is developed as a modular, accessible, redistributable, shareable, and user-friendly framework for scientists working with small RNA (sRNA)-seq data. Due to its modular workflow, advanced users can customize the steps and tools for their needs. In addition, the framework provides an analysis report where the significant output results are summarized in charts and visualizations. miRGalaxy can be accessed via preconfigured Docker image flavor and a Toolshed installation if the user already has a running Galaxy instance. Over the last decade, studies on the expression of miRs and isomiRs in normal and deregulated tissues have led to the discovery of their potential as diagnostic biomarkers. The detection of miRs in biofluids further expanded the exploration of the miR repertoire as a source of liquid biopsy biomarkers. Here we show the miRGalaxy framework application for in-depth analysis of the sRNA-seq data from two different biofluids, milk and plasma, to identify, annotate, and discover specific differentially expressed miRs and isomiRs.
RESUMEN
Tumor-educated Platelets (TEPs) have emerged as rich biosources of cancer-related RNA profiles in liquid biopsies applicable for cancer detection. Although human blood platelets have been found to be enriched in circular RNA (circRNA), no studies have investigated the potential of circRNA as platelet-derived biomarkers for cancer. In this proof-of-concept study, we examine whether the circRNA signature of blood platelets can be used as a liquid biopsy biomarker for the detection of non-small cell lung cancer (NSCLC). We analyzed the total RNA, extracted from the platelet samples collected from NSCLC patients and asymptomatic individuals, using RNA sequencing (RNA-Seq). Identification and quantification of known and novel circRNAs were performed using the accurate CircRNA finder suite (ACFS), followed by the differential transcript expression analysis using a modified version of our thromboSeq software. Out of 4732 detected circRNAs, we identified 411 circRNAs that are significantly (p-value < 0.05) differentially expressed between asymptomatic individuals and NSCLC patients. Using the false discovery rate (FDR) of 0.05 as cutoff, we selected the nuclear receptor-interacting protein 1 (NRIP1) circRNA (circNRIP1) as a potential biomarker candidate for further validation by reverse transcription-quantitative PCR (RT-qPCR). This analysis was performed on an independent cohort of platelet samples. The RT-qPCR results confirmed the RNA-Seq data analysis, with significant downregulation of circNRIP1 in platelets derived from NSCLC patients. Our findings suggest that circRNAs found in blood platelets may hold diagnostic biomarkers potential for the detection of NSCLC using liquid biopsies.
RESUMEN
Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I-restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL 49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL 49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL 49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL 49.5 proteins block TAP as well, these data indicate that UL 49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL 49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL 49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL 49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL 49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL 49.5. Taken together, these results classify the UL 49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Herpesvirus Bovino 1/inmunología , Herpesvirus Équido 1/inmunología , Herpesvirus Suido 1/inmunología , Varicellovirus/fisiología , Proteínas del Envoltorio Viral/inmunología , Transportadoras de Casetes de Unión a ATP/genética , Animales , Presentación de Antígeno , Bovinos , Línea Celular Tumoral , Supervivencia Celular/inmunología , Perros , Herpesvirus Bovino 1/genética , Herpesvirus Équido 1/genética , Herpesvirus Suido 1/genética , Caballos , Humanos , Transporte de Proteínas , Recombinación Genética , Porcinos , Transducción Genética , Varicellovirus/patogenicidad , Proteínas del Envoltorio Viral/genéticaRESUMEN
TAP translocates virus-derived peptides from the cytosol into the endoplasmic reticulum, where the peptides are loaded onto MHC class I molecules. This process is crucial for the detection of virus-infected cells by CTL that recognize the MHC class I-peptide complexes at the cell surface. The varicellovirus bovine herpesvirus 1 encodes a protein, UL49.5, that acts as a potent inhibitor of TAP. UL49.5 acts in two ways, as follows: 1) by blocking conformational changes of TAP required for the translocation of peptides into the endoplasmic reticulum, and 2) by targeting TAP1 and TAP2 for proteasomal degradation. At present, it is unknown whether UL49.5 interacts with TAP1, TAP2, or both. The contribution of other members of the peptide-loading complex has not been established. Using TAP-deficient cells reconstituted with wild-type and recombinant forms of TAP1 and TAP2, TAP was defined as the prime target of UL49.5 within the peptide-loading complex. The presence of TAP1 and TAP2 was required for efficient interaction with UL49.5. Using deletion mutants of TAP1 and TAP2, the 6+6 transmembrane core complex of TAP was shown to be sufficient for UL49.5 to interact with TAP and block its function. However, UL49.5-induced inhibition of peptide transport was most efficient in cells expressing full-length TAP1 and TAP2. Inhibition of TAP by UL49.5 appeared to be independent of the presence of other peptide-loading complex components, including tapasin. These results demonstrate that UL49.5 acts directly on the 6+6 transmembrane TAP core complex of TAP by blocking essential conformational transitions required for peptide transport.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/metabolismo , Herpesvirus Bovino 1/fisiología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas del Envoltorio Viral/fisiología , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2 , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Animales , Línea Celular Transformada , Línea Celular Tumoral , Células Cultivadas , Dimerización , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Péptidos/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Ratas , Proteínas del Envoltorio Viral/biosíntesis , Proteínas del Envoltorio Viral/genéticaRESUMEN
Numerous studies on microRNAs (miRNA) in cancer and other diseases have been accompanied by diverse computational approaches and experimental methods to predict and validate miRNA biological and clinical significance as easily accessible disease biomarkers. In recent years, the application of the next-generation deep sequencing for the analysis and discovery of novel RNA biomarkers has clearly shown an expanding repertoire of diverse sequence variants of mature miRNAs, or isomiRs, resulting from alternative post-transcriptional processing events, and affected by (patho)physiological changes, population origin, individual's gender, and age. Here, we provide an in-depth overview of currently available bioinformatics approaches for the detection and visualization of both mature miRNA and cognate isomiR sequences. An attempt has been made to present in a systematic way the advantages and downsides of in silico approaches in terms of their sensitivity and accuracy performance, as well as used methods, workflows, and processing steps, and end output dataset overlapping issues. The focus is given to the challenges and pitfalls of isomiR expression analysis. Specifically, we address the availability of tools enabling research without extensive bioinformatics background to explore this fascinating corner of the small RNAome universe that may facilitate the discovery of new and more reliable disease biomarkers.
Asunto(s)
Biomarcadores , Biología Computacional , MicroARNs/genética , Transcriptoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/aislamiento & purificación , Neoplasias/genéticaRESUMEN
Oncolytic adenoviruses are being developed as new anti-cancer agents. Their efficacy can be improved by incorporating RNA interference (RNAi) molecules. RNAi molecules can be expressed in various precursor formats. The aim of this study was to determine the most effective format. To this end, we constructed three Δ24-type oncolytic adenoviruses, with human microRNA-1 (miR-1) expression cassettes in short hairpin RNA (shRNA), precursor microRNA (pre-miRNA), and primary miRNA (pri-miRNA) format, respectively. The viruses were compared for virus replication, mature miR-1 expression, and target gene silencing in cancer cells. Incorporation of the cassettes had only minor effects on virus replication. Mature miR-1 expression from the pri-miRNA format reached on average 100-fold higher levels than from the other two formats. This expression remained stable upon long-term virus propagation. Infection with the pri-miR-1-expressing virus silenced the validated miR-1 targets FOXP1 and MET. Drosha knockout almost completely abrogated mature miR-1 expression, confirming that processing of adenovirus-encoded pri-miR-1 was dependent on the host cell miRNA machinery. Using simple in vitro recombination cloning, a similar virus expressing miR-26b was made and shown to silence the validated miR-26b target PTGS2. We thus provide a platform for construction of oncolytic adenoviruses with high expression of RNAi molecules of choice.
RESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is traditionally associated with thrombocytosis/hypercoagulation and novel insights on platelet-PDAC "dangerous liaisons" are warranted. Here we performed an integrative omics study investigating the biological processes of mRNAs and expressed miRNAs, as well as proteins in PDAC blood platelets, using benign disease as a reference for inflammatory noise. Gene ontology mining revealed enrichment of RNA splicing, mRNA processing and translation initiation in miRNAs and proteins but depletion in RNA transcripts. Remarkably, correlation analyses revealed a negative regulation on SPARC transcription by isomiRs involved in cancer signaling, suggesting a specific "education" in PDAC platelets. Platelets of benign patients were enriched for non-templated additions of G nucleotides (#ntaG) miRNAs, while PDAC presented length variation on 3' (lv3p) as the most frequent modification on miRNAs. Additionally, we provided an actionable repertoire of PDAC and benign platelet-ome to be exploited for future studies. In conclusion, our data show that platelets change their biological repertoire in patients with PDAC, through dysregulation of miRNAs and splicing factors, supporting the presence of de novo protein machinery that can "educate" the platelet. These novel findings could be further exploited for innovative liquid biopsies platforms as well as possible therapeutic targets.