Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Exp Bot ; 75(3): 1036-1050, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37831920

RESUMEN

Sulfur (S) is an essential mineral nutrient for plant growth and development; it is important for primary and specialized plant metabolites that are crucial for biotic and abiotic interactions. Foliar S content varies up to 6-fold under a controlled environment, suggesting an adaptive value under certain natural environmental conditions. However, a major quantitative regulator of S content in Arabidopsis thaliana has not been identified yet, pointing to the existence of either additional genetic factors controlling sulfate/S content or of many minor quantitative regulators. Here, we use overlapping information of two separate ionomics studies to select groups of accessions with low, mid, and high foliar S content. We quantify series of metabolites, including anions (sulfate, phosphate, and nitrate), thiols (cysteine and glutathione), and seven glucosinolates, gene expression of 20 genes, sulfate uptake, and three biotic traits. Our results suggest that S content is tightly connected with sulfate uptake, the concentration of sulfate and phosphate anions, and glucosinolate and glutathione synthesis. Additionally, our results indicate that the growth of pathogenic bacteria is enhanced in the A. thaliana accessions containing higher S in their leaves, suggesting a complex regulation between S homeostasis, primary and secondary metabolism, and biotic pressures.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Aniones/metabolismo , Sulfatos/metabolismo , Glutatión/metabolismo , Azufre/metabolismo , Fosfatos/metabolismo , Glucosinolatos , Regulación de la Expresión Génica de las Plantas
2.
J Exp Bot ; 74(8): 2667-2679, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36651631

RESUMEN

Plants exude secondary metabolites from the roots to shape the composition and function of their microbiome. Many of these compounds are known for their anti-microbial activities and play a role in plant immunity, such as the indole-derived phytoalexin camalexin. Here we studied the dynamics of camalexin synthesis and exudation upon interaction of Arabidopsis thaliana with the plant growth promoting bacteria Pseudomonas sp. CH267 or the bacterial pathogen Burkholderia glumae PG1. We show that while camalexin accumulation and exudation is more rapidly but transiently induced upon interaction with the growth promoting bacteria, the pathogen induces higher and more stable camalexin levels. By combination of experiments with cut shoots and roots, and grafting of wild-type plants with mutants in camalexin synthesis, we showed that while camalexin can be produced and released by both organs, in intact plants exuded camalexin originates in the shoots. We also reveal that the root specific CYP71A27 protein specifically affects the outcome of the interaction with the plant growth promoting bacteria and that its transcript levels are controlled by a shoot derived signal. In conclusion, camalexin synthesis seems to be controlled on a whole plant level and is coordinated between the shoots and the roots.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fitoalexinas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Indoles/metabolismo , Raíces de Plantas/metabolismo
3.
Plant Cell ; 31(1): 231-249, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30464037

RESUMEN

The compartmentalization of PAPS (the sulfate donor 3'-phosphoadenosine 5'-phosphosulfate) synthesis (mainly in plastids), PAPS consumption (in the cytosol), and PAP (the stress signaling molecule 3'-phosphoadenosine 5'-phosphate) degradation (in plastids and mitochondria) requires organellar transport systems for both PAPS and PAP. The plastidial transporter PAPST1 (PAPS TRANSPORTER1) delivers newly synthesized PAPS from the stroma to the cytosol. We investigated the activity of PAPST2, the closest homolog of PAPST1, which unlike PAPST1 is targeted to both the plastids and mitochondria. Biochemical characterization in Arabidopsis thaliana revealed that PAPST2 mediates the antiport of PAP, PAPS, ATP, and ADP. Strongly increased cellular PAP levels negatively affect plant growth, as observed in the fry1 papst2 mutant, which lacks the PAP-catabolizing enzyme SALT TOLERANCE 1 and PAPST2. PAP levels were specifically elevated in the cytosol of papst2 and fiery1 papst2, but not in papst1 or fry1 papst1 PAPST1 failed to complement the papst2 mutant phenotype in mitochondria, because it likely removes PAPS from the cell, as demonstrated by the increased expression of phytosulfokine genes. Overexpression of SAL1 in mitochondria rescued the phenotype of fry1 but not fry1 papst2 Therefore, PAPST2 represents an important organellar importer of PAP, providing a piece of the puzzle in our understanding of the organelle-to-nucleus PAP retrograde signaling pathway.


Asunto(s)
Adenosina Difosfato/metabolismo , Citosol/metabolismo , Plastidios/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Transducción de Señal
4.
Proc Natl Acad Sci U S A ; 116(31): 15735-15744, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31311863

RESUMEN

Plants in their natural ecosystems interact with numerous microorganisms, but how they influence their microbiota is still elusive. We observed that sulfatase activity in soil, which can be used as a measure of rhizosphere microbial activity, is differently affected by Arabidopsis accessions. Following a genome-wide association analysis of the variation in sulfatase activity we identified a candidate gene encoding an uncharacterized cytochrome P450, CYP71A27 Loss of this gene resulted in 2 different and independent microbiota-specific phenotypes: A lower sulfatase activity in the rhizosphere and a loss of plant growth-promoting effect by Pseudomonas sp. CH267. On the other hand, tolerance to leaf pathogens was not affected, which agreed with prevalent expression of CYP71A27 in the root vasculature. The phenotypes of cyp71A27 mutant were similar to those of cyp71A12 and cyp71A13, known mutants in synthesis of camalexin, a sulfur-containing indolic defense compound. Indeed, the cyp71A27 mutant accumulated less camalexin in the roots upon elicitation with silver nitrate or flagellin. Importantly, addition of camalexin complemented both the sulfatase activity and the loss of plant growth promotion by Pseudomonas sp. CH267. Two alleles of CYP71A27 were identified among Arabidopsis accessions, differing by a substitution of Glu373 by Gln, which correlated with the ability to induce camalexin synthesis and to gain fresh weight in response to Pseudomonas sp. CH267. Thus, CYP71A27 is an additional component in the camalexin synthesis pathway, contributing specifically to the control of plant microbe interactions in the root.


Asunto(s)
Arabidopsis , Sistema Enzimático del Citocromo P-450 , Indoles/metabolismo , Raíces de Plantas , Pseudomonas/metabolismo , Tiazoles/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología
5.
Plant Physiol ; 184(4): 2120-2136, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33060195

RESUMEN

Sulfur, an indispensable constituent of many cellular components, is a growth-limiting macronutrient for plants. Thus, to successfully adapt to changing sulfur availability and environmental stress, a sulfur-deficiency response helps plants to cope with the limited supply. On the transcriptional level, this response is controlled by SULFUR LIMITATION1 (SLIM1), a member of the ETHYLENE-INSENSITIVE3-LIKE (EIL) transcription factor family. In this study, we identified EIL1 as a second transcriptional activator regulating the sulfur-deficiency response, subordinate to SLIM1/EIL3. Our comprehensive RNA sequencing analysis in Arabidopsis (Arabidopsis thaliana) allowed us to obtain a complete picture of the sulfur-deficiency response and quantify the contributions of these two transcription factors. We confirmed the key role of SLIM1/EIL3 in controlling the response, particularly in the roots, but showed that in leaves more than 50% of the response is independent of SLIM1/EIL3 and EIL1. RNA sequencing showed an additive contribution of EIL1 to the regulation of the sulfur-deficiency response but also identified genes specifically regulated through EIL1. SLIM1/EIL3 seems to have further functions (e.g. in the regulation of genes responsive to hypoxia or mediating defense at both low and normal sulfur supply). These results contribute to the dissection of mechanisms of the sulfur-deficiency response and provide additional possibilities to improve adaptation to sulfur-deficiency conditions.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Estrés Fisiológico/genética , Azufre/deficiencia , Azufre/metabolismo , Factores de Transcripción/metabolismo , Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Transcripción Genética
6.
J Exp Bot ; 72(1): 57-69, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-32995888

RESUMEN

One of the major questions in contemporary plant science involves determining the functional mechanisms that plants use to shape their microbiome. Plants produce a plethora of chemically diverse secondary metabolites, many of which exert bioactive effects on microorganisms. Several recent publications have unequivocally shown that plant secondary metabolites affect microbiome composition and function. These studies have pinpointed that the microbiome can be influenced by a diverse set of molecules, including: coumarins, glucosinolates, benzoxazinoids, camalexin, and triterpenes. In this review, we summarize the role of secondary metabolites in shaping the plant microbiome, highlighting recent literature. A body of knowledge is now emerging that links specific plant metabolites with distinct microbial responses, mediated via defined biochemical mechanisms. There is significant potential to boost agricultural sustainability via the targeted enhancement of beneficial microbial traits, and here we argue that the newly discovered links between root chemistry and microbiome composition could provide a new set of tools for rationally manipulating the plant microbiome.


Asunto(s)
Microbiota , Rizosfera , Raíces de Plantas , Plantas
7.
Proc Natl Acad Sci U S A ; 113(49): E7996-E8005, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27864511

RESUMEN

Lotus japonicus has been used for decades as a model legume to study the establishment of binary symbiotic relationships with nitrogen-fixing rhizobia that trigger root nodule organogenesis for bacterial accommodation. Using community profiling of 16S rRNA gene amplicons, we reveal that in Lotus, distinctive nodule- and root-inhabiting communities are established by parallel, rather than consecutive, selection of bacteria from the rhizosphere and root compartments. Comparative analyses of wild-type (WT) and symbiotic mutants in Nod factor receptor5 (nfr5), Nodule inception (nin) and Lotus histidine kinase1 (lhk1) genes identified a previously unsuspected role of the nodulation pathway in the establishment of different bacterial assemblages in the root and rhizosphere. We found that the loss of nitrogen-fixing symbiosis dramatically alters community structure in the latter two compartments, affecting at least 14 bacterial orders. The differential plant growth phenotypes seen between WT and the symbiotic mutants in nonsupplemented soil were retained under nitrogen-supplemented conditions that blocked the formation of functional nodules in WT, whereas the symbiosis-impaired mutants maintain an altered community structure in the nitrogen-supplemented soil. This finding provides strong evidence that the root-associated community shift in the symbiotic mutants is a direct consequence of the disabled symbiosis pathway rather than an indirect effect resulting from abolished symbiotic nitrogen fixation. Our findings imply a role of the legume host in selecting a broad taxonomic range of root-associated bacteria that, in addition to rhizobia, likely contribute to plant growth and ecological performance.


Asunto(s)
Lotus/microbiología , Consorcios Microbianos , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas/microbiología , Microbiología del Suelo , Brassicaceae/microbiología , Fertilizantes , Simbiosis
8.
PLoS Genet ; 12(9): e1006298, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27622452

RESUMEN

Sulphur (S) is an essential element for all living organisms. The uptake, assimilation and metabolism of S in plants are well studied. However, the regulation of S homeostasis remains largely unknown. Here, we report on the identification and characterisation of the more sulphur accumulation1 (msa1-1) mutant. The MSA1 protein is localized to the nucleus and is required for both S-adenosylmethionine (SAM) production and DNA methylation. Loss of function of the nuclear localised MSA1 leads to a reduction in SAM in roots and a strong S-deficiency response even at ample S supply, causing an over-accumulation of sulphate, sulphite, cysteine and glutathione. Supplementation with SAM suppresses this high S phenotype. Furthermore, mutation of MSA1 affects genome-wide DNA methylation, including the methylation of S-deficiency responsive genes. Elevated S accumulation in msa1-1 requires the increased expression of the sulphate transporter genes SULTR1;1 and SULTR1;2 which are also differentially methylated in msa1-1. Our results suggest a novel function for MSA1 in the nucleus in regulating SAM biosynthesis and maintaining S homeostasis epigenetically via DNA methylation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epigénesis Genética , Homeostasis , Proteínas Nucleares/genética , S-Adenosilmetionina/metabolismo , Transporte Activo de Núcleo Celular , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Metilación de ADN , Glutatión/metabolismo , Proteínas Nucleares/metabolismo
9.
Plant Mol Biol ; 91(6): 617-27, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26810064

RESUMEN

Plant hormones have a plethora of functions in control of plant development, stress response, and primary metabolism, including nutrient homeostasis. In the plant nutrition, the interplay of hormones with responses to nitrate and phosphate deficiency is well described, but relatively little is known about the interaction between phytohormones and regulation of sulfur metabolism. As for other nutrients, sulfate deficiency results in modulation of root architecture, where hormones are expected to play an important role. Accordingly, sulfate deficiency induces genes involved in metabolism of tryptophane and auxin. Also jasmonate biosynthesis is induced, pointing to the need of increase the defense capabilities of the plants when sulfur is limiting. However, hormones affect also sulfate uptake and assimilation. The pathway is coordinately induced by jasmonate and the key enzyme, adenosine 5'-phosphosulfate reductase, is additionally regulated by ethylene, abscisic acid, nitric oxid, and other phytohormones. Perhaps the most intriguing link between hormones and sulfate assimilation is the fact that the main regulator of the response to sulfate starvation, SULFATE LIMITATION1 (SLIM1) belongs to the family of ethylene related transcription factors. We will review the current knowledge of interplay between phytohormones and control of sulfur metabolism and discuss the main open questions.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , Sulfatos/metabolismo , Transducción de Señal
10.
Nat Genet ; 39(7): 896-900, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17589509

RESUMEN

Most agronomic traits of importance, whether physiological (such as nutrient use efficiency) or developmental (such as flowering time), are controlled simultaneously by multiple genes and their interactions with the environment. Here, we show that variation in sulfate content between wild Arabidopsis thaliana accessions Bay-0 and Shahdara is controlled by a major quantitative trait locus that results in a strong interaction with nitrogen availability in the soil. Combining genetic and biochemical results and using a candidate gene approach, we have cloned the underlying gene, showing how a single-amino acid substitution in a key enzyme of the assimilatory sulfate reduction pathway, adenosine 5'-phosphosulfate reductase, is responsible for a decrease in enzyme activity, leading to sulfate accumulation in the plant. This work illustrates the potential of natural variation as a source of new alleles of known genes, which can aid in the study of gene function and metabolic pathway regulation. Our new insights on sulfate assimilation may have an impact on sulfur fertilizer use and stress defense improvement.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/genética , Variación Genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/fisiología , Sulfatos/metabolismo , Proteínas de Arabidopsis/fisiología , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/fisiología , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Sitios de Carácter Cuantitativo
11.
Plant Physiol ; 166(1): 442-50, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25049360

RESUMEN

To assess the variation in nutrient homeostasis in oilseed rape and to identify the genes responsible for this variation, we determined foliar anion levels in a diversity panel of Brassica napus accessions, 84 of which had been genotyped previously using messenger RNA sequencing. We applied associative transcriptomics to identify sequence polymorphisms linked to variation in nitrate, phosphate, or sulfate in these accessions. The analysis identified several hundred significant associations for each anion. Using functional annotation of Arabidopsis (Arabidopsis thaliana) homologs and available microarray data, we identified 60 candidate genes for controlling variation in the anion contents. To verify that these genes function in the control of nutrient homeostasis, we obtained Arabidopsis transfer DNA insertion lines for these candidates and tested them for the accumulation of nitrate, phosphate, and sulfate. Fourteen lines differed significantly in levels of the corresponding anions. Several of these genes have been shown previously to affect the accumulation of the corresponding anions in Arabidopsis mutants. These results thus confirm the power of associative transcriptomics in dissection of the genetic control of complex traits and present a set of candidate genes for use in the improvement of efficiency of B. napus mineral nutrition.


Asunto(s)
Aniones/metabolismo , Brassica napus/metabolismo , Brassica napus/genética , Perfilación de la Expresión Génica , Genes de Plantas , Estudio de Asociación del Genoma Completo , Homeostasis , Mutagénesis Insercional
12.
Plant Physiol ; 166(3): 1593-608, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25245030

RESUMEN

Natural variation allows the investigation of both the fundamental functions of genes and their role in local adaptation. As one of the essential macronutrients, sulfur is vital for plant growth and development and also for crop yield and quality. Selenium and sulfur are assimilated by the same process, and although plants do not require selenium, plant-based selenium is an important source of this essential element for animals. Here, we report the use of linkage mapping in synthetic F2 populations and complementation to investigate the genetic architecture of variation in total leaf sulfur and selenium concentrations in a diverse set of Arabidopsis (Arabidopsis thaliana) accessions. We identify in accessions collected from Sweden and the Czech Republic two variants of the enzyme ADENOSINE 5'-PHOSPHOSULFATE REDUCTASE2 (APR2) with strongly diminished catalytic capacity. APR2 is a key enzyme in both sulfate and selenate reduction, and its reduced activity in the loss-of-function allele apr2-1 and the two Arabidopsis accessions Hodonín and Shahdara leads to a lowering of sulfur flux from sulfate into the reduced sulfur compounds, cysteine and glutathione, and into proteins, concomitant with an increase in the accumulation of sulfate in leaves. We conclude from our observation, and the previously identified weak allele of APR2 from the Shahdara accession collected in Tadjikistan, that the catalytic capacity of APR2 varies by 4 orders of magnitude across the Arabidopsis species range, driving significant differences in sulfur and selenium metabolism. The selective benefit, if any, of this large variation remains to be explored.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Selenio/metabolismo , Azufre/metabolismo , Sustitución de Aminoácidos , Proteínas de Arabidopsis/genética , República Checa , Frecuencia de los Genes , Variación Genética , Estudio de Asociación del Genoma Completo , Isoenzimas/genética , Isoenzimas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Fenotipo , Hojas de la Planta/metabolismo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Sulfatos/metabolismo , Suecia
13.
Plant Physiol ; 163(3): 1133-41, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24027241

RESUMEN

Sulfur is an essential macronutrient for all living organisms. Plants take up inorganic sulfate from the soil, reduce it, and assimilate it into bioorganic compounds, but part of this sulfate is stored in the vacuoles. In our first attempt to identify genes involved in the control of sulfate content in the leaves, we reported that a quantitative trait locus (QTL) for sulfate content in Arabidopsis (Arabidopsis thaliana) was underlain by the APR2 isoform of the key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase. To increase the knowledge of the control of this trait, we cloned a second QTL from the same analysis. Surprisingly, the gene underlying this QTL encodes the ATPS1 isoform of the enzyme ATP sulfurylase, which precedes adenosine 5'-phosphosulfate reductase in the sulfate assimilation pathway. Plants with the Bay allele of ATPS1 accumulate lower steady-state levels of ATPS1 transcript than those with the Sha allele, which leads to lower enzyme activity and, ultimately, the accumulation of sulfate. Our results show that the transcript variation is controlled in cis. Examination of ATPS1 sequences of Bay-0 and Shahdara identified two deletions in the first intron and immediately downstream the gene in Bay-0 shared with multiple other Arabidopsis accessions. The average ATPS1 transcript levels are lower in these accessions than in those without the deletions, while sulfate levels are significantly higher. Thus, sulfate content in Arabidopsis is controlled by two genes encoding subsequent enzymes in the sulfate assimilation pathway but using different mechanisms, variation in amino acid sequence and variation in expression levels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sulfato Adenililtransferasa/metabolismo , Sulfatos/metabolismo , Arabidopsis/clasificación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Sitios de Carácter Cuantitativo/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Sulfato Adenililtransferasa/genética , Azufre/metabolismo
14.
New Phytol ; 199(3): 650-62, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23692606

RESUMEN

The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as it acclimated to sulfate limitation. Lowering sulfate availability in artificial seawater from 25 to 5 mM resulted in significant reduction in growth and intracellular concentrations of dimethylsulfoniopropionate and glutathione. Sulfate-limited E. huxleyi cells showed increased sulfate uptake but sulfate reduction to sulfite did not seem to be regulated. Sulfate limitation in E. huxleyi affected expression of 1718 genes. The vast majority of these genes were upregulated, including genes involved in carbohydrate and lipid metabolism, and genes involved in the general stress response. The acclimation response of E. huxleyi to sulfate deficiency shows several similarities to the well-described responses of Arabidopsis and Chlamydomonas, but also has many unique features. This dataset shows that even though E. huxleyi is adapted to constitutively high sulfate concentration, it retains the ability to re-program its gene expression in response to reduced sulfate availability.


Asunto(s)
Organismos Acuáticos/genética , Perfilación de la Expresión Génica , Haptophyta/genética , Microalgas/genética , Sulfatos/farmacología , Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/metabolismo , Genoma/genética , Haptophyta/efectos de los fármacos , Haptophyta/crecimiento & desarrollo , Haptophyta/metabolismo , Microalgas/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Azufre/metabolismo , Transcripción Genética/efectos de los fármacos
15.
J Exp Bot ; 64(4): 1039-48, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23314821

RESUMEN

Glucosinolates are a major class of sulphur-containing secondary metabolites involved in plant defence against pathogens. Recently many regulatory links between glucosinolate biosynthesis and sulphate assimilation were established. Since sulphate assimilation undergoes diurnal rhythm and is light regulated, this study analysed whether the same is true for glucosinolate biosynthesis. The levels of glucosinolates and glutathione were found to be higher during the day than during the night. This agreed with variation in sulphate uptake as well as activity of the key enzyme of the sulphate assimilation pathway, adenosine 5'-phosphosulphate reductase. Correspondingly, the flux through sulphate assimilation was higher during the day than during the night, with the maximum flux through primary assimilation preceding maximal incorporation into glucosinolates. Prolonged darkness resulted in a strong reduction in glucosinolate content. Re-illumination of such dark-adapted plants induced accumulation of mRNA for many genes of glucosinolate biosynthesis, leading to increased glucosinolate biosynthesis. The light regulation of the glucosinolate synthesis genes as well as many genes of primary sulphate assimilation was controlled at least partly by the LONG HYPOCOTYL5 (HY5) transcription regulator. Thus, glucosinolate biosynthesis is highly co-regulated with sulphate assimilation.


Asunto(s)
Arabidopsis/efectos de la radiación , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Glucosinolatos/biosíntesis , Luz , Azufre/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Oscuridad , Genes de Plantas , Glutatión/genética , Glutatión/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sulfatos/metabolismo , Radioisótopos de Azufre/metabolismo
16.
Plant Sci ; 326: 111498, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36252857

RESUMEN

Nitrogen (N) and phosphorus (P) are two essential plant macronutrients that can limit plant growth by different mechanisms. We aimed to shed light on how soybean respond to low nitrogen (LN), low phosphorus (LP) and their combined deficiency (LNP). Generally, these conditions triggered changes in gene expression of the same processes, including cell wall organization, defense response, response to oxidative stress, and photosynthesis, however, response was different in each condition. A typical primary response to LN and LP was detected also in soybean, i.e., the enhanced uptake of N and P, respectively, by upregulation of genes for the corresponding transporters. The regulation of genes involved in cell wall organization showed that in LP roots tended to produce more casparian strip, in LN more secondary wall biosynthesis occurred, and in LNP reduction in expression of genes involved in secondary wall production accompanied by cell wall loosening was observed. Flavonoid biosynthesis also showed distinct pattern of regulation in different conditions: more anthocyanin production in LP, and more isoflavonoid production in LN and LNP, which we confirmed also on the metabolite level. Interestingly, in soybean the nutrient deficiencies reduced defense response by lowering expression of genes involved in defense response, suggesting a role of N and P nutrition in plant disease resistance. In conclusion, we provide detailed information on how LN, LP, and LNP affect different processes in soybean roots on the molecular and physiological levels.


Asunto(s)
Glycine max , Fósforo , Glycine max/genética , Glycine max/metabolismo , Nitrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Transcriptoma , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
17.
Plant J ; 67(6): 1042-54, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21623972

RESUMEN

Plant sulfate assimilation is regulated by demand for reduced sulfur, as is its key enzyme, adenosine 5'-phosphosulfate reductase (APR). In a genetic screen for mutants lacking this regulation, we identified the bZIP transcription factor LONG HYPOCOTYL 5 (HY5) as a necessary component of the regulatory circuit. Regulation of APR activity by the inhibitor of glutathione synthesis, buthionine sulfoximine, or by the precursor of cysteine, O-acetylserine, was disrupted in the hy5 mutant. When dark-adapted plants were re-illuminated, the rapid induction of APR1 and APR2 mRNA levels was attenuated in hy5 seedlings, but APR3 regulation was not affected. Chromatin immunoprecipitation revealed that HY5 binds directly to the APR1 and APR2 promoters but not to the APR3 promoter. Accordingly, the regulation of APR1 and APR2 by O-acetylserine was disturbed in hy5 roots. HY5 is also important for the coordination of nitrogen and sulfur assimilation, as, unlike the wild-type, hy5 mutants do not undergo a reduction in sulfate uptake and APR activity during nitrogen starvation. Altogether, these data show that HY5 plays an important role in regulation of APR gene expression and plant sulfate assimilation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Nucleares/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Sulfatos/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Butionina Sulfoximina/farmacología , Codón sin Sentido , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Nitrógeno/metabolismo , Proteínas Nucleares/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Regiones Promotoras Genéticas , Plantones/efectos de los fármacos , Plantones/genética , Serina/análogos & derivados , Serina/farmacología
18.
Plant J ; 65(1): 96-105, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21175893

RESUMEN

Sulfur is an essential nutrient for all organisms. Plants take up most sulfur as inorganic sulfate, reduce it and incorporate it into cysteine during primary sulfate assimilation. However, some of the sulfate is partitioned into the secondary metabolism to synthesize a variety of sulfated compounds. The two pathways of sulfate utilization branch after activation of sulfate to adenosine 5'-phosphosulfate (APS). Recently we showed that the enzyme APS kinase limits the availability of activated sulfate for the synthesis of sulfated secondary compounds in Arabidopsis. To further dissect the control of sulfur partitioning between the primary and secondary metabolism, we analysed plants in which activities of enzymes that use APS as a substrate were increased or reduced. Reduction in APS kinase activity led to reduced levels of glucosinolates as a major class of sulfated secondary metabolites and an increased concentration of thiols, products of primary reduction. However, over-expression of this gene does not affect the levels of glucosinolates. Over-expression of APS reductase had no effect on glucosinolate levels but did increase thiol levels, but neither glucosinolate nor thiol levels were affected in mutants lacking the APR2 isoform of this enzyme. Measuring the flux through sulfate assimilation using [(35) S]sulfate confirmed the larger flow of sulfur to primary assimilation when APS kinase activity was reduced. Thus, at least in Arabidopsis, the interplay between APS reductase and APS kinase is important for sulfur partitioning between the primary and secondary metabolism.


Asunto(s)
Arabidopsis/metabolismo , Azufre/metabolismo , Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Glucosinolatos/metabolismo , Glutatión/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Sulfatos/metabolismo
19.
Plant J ; 66(5): 863-76, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21401744

RESUMEN

MicroRNAs play a key role in the control of plant development and response to adverse environmental conditions. For example, microRNA395 (miR395), which targets three out of four isoforms of ATP sulfurylase, the first enzyme of sulfate assimilation, as well as a low-affinity sulfate transporter, SULTR2;1, is strongly induced by sulfate deficiency. However, other components of sulfate assimilation are induced by sulfate starvation, so that the role of miR395 is counterintuitive. Here, we describe the regulation of miR395 and its targets by sulfate starvation. We show that miR395 is important for the increased translocation of sulfate to the shoots during sulfate starvation. MiR395 together with the SULFUR LIMITATION 1 transcription factor maintain optimal levels of ATP sulfurylase transcripts to enable increased flux through the sulfate assimilation pathway in sulfate-deficient plants. Reduced expression of ATP sulfurylase (ATPS) alone affects both sulfate translocation and flux, but SULTR2;1 is important for the full rate of sulfate translocation to the shoots. Thus, miR395 is an integral part of the regulatory circuit controlling plant sulfate assimilation with a complex mechanism of action.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , MicroARNs/metabolismo , Sulfatos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , MicroARNs/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico , Sulfato Adenililtransferasa/metabolismo
20.
Plant Biotechnol J ; 10(7): 851-61, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22621344

RESUMEN

Protein therapeutics represent one of the most increasing areas in the pharmaceutical industry. Plants gain acceptance as attractive alternatives for high-quality and economical protein production. However, as the majority of biopharmaceuticals are glycoproteins, plant-specific N-glycosylation has to be taken into consideration. In Physcomitrella patens (moss), glyco-engineering is an applicable tool, and the removal of immunogenic core xylose and fucose residues was realized before. Here, we present the identification of the enzymes that are responsible for terminal glycosylation (α1,4 fucosylation and ß1,3 galactosylation) on complex-type N-glycans in moss. The terminal trisaccharide consisting of α1,4 fucose and ß1,3 galactose linked to N-acetylglucosamine forms the so-called Lewis A epitope. This epitope is rare on moss wild-type proteins, but was shown to be enriched on complex-type N-glycans of moss-produced recombinant human erythropoietin, while unknown from the native human protein. Via gene targeting of moss galactosyltransferase and fucosyltransferase genes, we identified the gene responsible for terminal glycosylation and were able to completely abolish the formation of Lewis A residues on the recombinant biopharmaceutical.


Asunto(s)
Asialoglicoproteínas/biosíntesis , Biotecnología/métodos , Bryopsida/metabolismo , Carbohidratos/química , Eritropoyetina/análogos & derivados , Oligosacáridos/metabolismo , Secuencia de Aminoácidos , Western Blotting , Bryopsida/enzimología , Bryopsida/genética , Antígeno CA-19-9 , Eritropoyetina/biosíntesis , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Técnicas de Inactivación de Genes , Glicopéptidos/química , Glicosilación , Humanos , Lectinas/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Filogenia , Polisacáridos/química , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA