Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(12): 3006-3023.e26, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38744280

RESUMEN

Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.


Asunto(s)
Centrómero , Cohesinas , Cinetocoros , Mitosis , Animales , Humanos , Ratones , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Pollos , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/química , Segregación Cromosómica , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo
2.
Nat Rev Mol Cell Biol ; 24(8): 543-559, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36964313

RESUMEN

The transmission of a complete set of chromosomes to daughter cells during cell division is vital for development and tissue homeostasis. The spindle assembly checkpoint (SAC) ensures correct segregation by informing the cell cycle machinery of potential errors in the interactions of chromosomes with spindle microtubules prior to anaphase. To do so, the SAC monitors microtubule engagement by specialized structures known as kinetochores and integrates local mechanical and chemical cues such that it can signal in a sensitive, responsive and robust manner. In this Review, we discuss how SAC proteins interact to allow production of the mitotic checkpoint complex (MCC) that halts anaphase progression by inhibiting the anaphase-promoting complex/cyclosome (APC/C). We highlight recent advances aimed at understanding the dynamic signalling properties of the SAC and how it interprets various naturally occurring intermediate attachment states. Further, we discuss SAC signalling in the context of the mammalian multisite kinetochore and address the impact of the fibrous corona. We also identify current challenges in understanding how the SAC ensures high-fidelity chromosome segregation.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Huso Acromático , Animales , Huso Acromático/metabolismo , Cinetocoros/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Microtúbulos/metabolismo , Segregación Cromosómica , Proteínas de Ciclo Celular/genética , Mamíferos/genética
3.
Nature ; 607(7919): 604-609, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35831506

RESUMEN

Chromosome segregation errors during cell divisions generate aneuploidies and micronuclei, which can undergo extensive chromosomal rearrangements such as chromothripsis1-5. Selective pressures then shape distinct aneuploidy and rearrangement patterns-for example, in cancer6,7-but it is unknown whether initial biases in segregation errors and micronucleation exist for particular chromosomes. Using single-cell DNA sequencing8 after an error-prone mitosis in untransformed, diploid cell lines and organoids, we show that chromosomes have different segregation error frequencies that result in non-random aneuploidy landscapes. Isolation and sequencing of single micronuclei from these cells showed that mis-segregating chromosomes frequently also preferentially become entrapped in micronuclei. A similar bias was found in naturally occurring micronuclei of two cancer cell lines. We find that segregation error frequencies of individual chromosomes correlate with their location in the interphase nucleus, and show that this is highest for peripheral chromosomes behind spindle poles. Randomization of chromosome positions, Cas9-mediated live tracking and forced repositioning of individual chromosomes showed that a greater distance from the nuclear centre directly increases the propensity to mis-segregate. Accordingly, chromothripsis in cancer genomes9 and aneuploidies in early development10 occur more frequently for larger chromosomes, which are preferentially located near the nuclear periphery. Our findings reveal a direct link between nuclear chromosome positions, segregation error frequencies and micronucleus content, with implications for our understanding of tumour genome evolution and the origins of specific aneuploidies during development.


Asunto(s)
Aneuploidia , Posicionamiento de Cromosoma , Segregación Cromosómica , Cromosomas , Proteína 9 Asociada a CRISPR , Línea Celular , Línea Celular Tumoral , Segregación Cromosómica/genética , Cromosomas/genética , Cromosomas/metabolismo , Cromotripsis , Crecimiento y Desarrollo/genética , Humanos , Interfase , Micronúcleos con Defecto Cromosómico , Mitosis , Neoplasias/genética , Neoplasias/patología , Organoides/citología , Organoides/metabolismo , Análisis de Secuencia de ADN , Análisis de la Célula Individual
4.
Chromosoma ; 133(3): 169-181, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38856923

RESUMEN

Centromeres are chromatin structures specialized in sister chromatid cohesion, kinetochore assembly, and microtubule attachment during chromosome segregation. The regional centromere of vertebrates consists of long regions of highly repetitive sequences occupied by the Histone H3 variant CENP-A, and which are flanked by pericentromeres. The three-dimensional organization of centromeric chromatin is paramount for its functionality and its ability to withstand spindle forces. Alongside CENP-A, key contributors to the folding of this structure include components of the Constitutive Centromere-Associated Network (CCAN), the protein CENP-B, and condensin and cohesin complexes. Despite its importance, the intricate architecture of the regional centromere of vertebrates remains largely unknown. Recent advancements in long-read sequencing, super-resolution and cryo-electron microscopy, and chromosome conformation capture techniques have significantly improved our understanding of this structure at various levels, from the linear arrangement of centromeric sequences and their epigenetic landscape to their higher-order compaction. In this review, we discuss the latest insights on centromere organization and place them in the context of recent findings describing a bipartite higher-order organization of the centromere.


Asunto(s)
Centrómero , Cromatina , Proteínas Cromosómicas no Histona , Vertebrados , Centrómero/metabolismo , Centrómero/ultraestructura , Animales , Cromatina/metabolismo , Cromatina/genética , Cromatina/ultraestructura , Cromatina/química , Humanos , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Vertebrados/genética , Proteína A Centromérica/metabolismo , Proteína A Centromérica/genética , Cohesinas , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Proteína B del Centrómero/metabolismo , Proteína B del Centrómero/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/ultraestructura , Adenosina Trifosfatasas
5.
EMBO J ; 40(14): e106536, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34009673

RESUMEN

Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12-dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT-AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT-AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.


Asunto(s)
Inestabilidad Cromosómica/genética , Cromosomas/genética , Mutación/genética , Empalmosomas/genética , Secuencia de Aminoácidos , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Células HeLa , Humanos , Intrones/genética
6.
Gastroenterology ; 165(2): 429-444.e15, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36906044

RESUMEN

BACKGROUND & AIMS: Patients with colon cancer with liver metastases may be cured with surgery, but the presence of additional lung metastases often precludes curative treatment. Little is known about the processes driving lung metastasis. This study aimed to elucidate the mechanisms governing lung vs liver metastasis formation. METHODS: Patient-derived organoid (PDO) cultures were established from colon tumors with distinct patterns of metastasis. Mouse models recapitulating metastatic organotropism were created by implanting PDOs into the cecum wall. Optical barcoding was applied to trace the origin and clonal composition of liver and lung metastases. RNA sequencing and immunohistochemistry were used to identify candidate determinants of metastatic organotropism. Genetic, pharmacologic, in vitro, and in vivo modeling strategies identified essential steps in lung metastasis formation. Validation was performed by analyzing patient-derived tissues. RESULTS: Cecum transplantation of 3 distinct PDOs yielded models with distinct metastatic organotropism: liver only, lung only, and liver and lung. Liver metastases were seeded by single cells derived from select clones. Lung metastases were seeded by polyclonal clusters of tumor cells entering the lymphatic vasculature with very limited clonal selection. Lung-specific metastasis was associated with high expression of desmosome markers, including plakoglobin. Plakoglobin deletion abrogated tumor cell cluster formation, lymphatic invasion, and lung metastasis formation. Pharmacologic inhibition of lymphangiogenesis attenuated lung metastasis formation. Primary human colon, rectum, esophagus, and stomach tumors with lung metastases had a higher N-stage and more plakoglobin-expressing intra-lymphatic tumor cell clusters than those without lung metastases. CONCLUSIONS: Lung and liver metastasis formation are fundamentally distinct processes with different evolutionary bottlenecks, seeding entities, and anatomic routing. Polyclonal lung metastases originate from plakoglobin-dependent tumor cell clusters entering the lymphatic vasculature at the primary tumor site.


Asunto(s)
Neoplasias del Colon , Neoplasias Hepáticas , Neoplasias Pulmonares , Ratones , Animales , Humanos , gamma Catenina/metabolismo , Neoplasias Pulmonares/patología , Neoplasias del Colon/genética , Neoplasias Hepáticas/patología
7.
Chromosome Res ; 31(4): 31, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37864038

RESUMEN

Aneuploidy-the karyotype state in which the number of chromosomes deviates from a multiple of the haploid chromosome set-is common in cancer, where it is thought to facilitate tumor initiation and progression. However, it is poorly tolerated in healthy cells: during development and tissue homeostasis, aneuploid cells are efficiently cleared from the population. It is still largely unknown how cancer cells become, and adapt to being, aneuploid. P53, the gatekeeper of the genome, has been proposed to guard against aneuploidy. Aneuploidy in cancer genomes strongly correlates with mutations in TP53, and p53 is thought to prevent the propagation of aneuploid cells. Whether p53 also participates in preventing the mistakes in cell division that lead to aneuploidy is still under debate. In this review, we summarize the current understanding of the role of p53 in protecting cells from aneuploidy, and we explore the consequences of functional p53 loss for the propagation of aneuploidy in cancer.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Aneuploidia , Cariotipificación , Mutación , Neoplasias/genética , Proteína p53 Supresora de Tumor/genética , Animales
8.
Cell ; 132(2): 233-46, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18243099

RESUMEN

Maintenance of chromosomal stability relies on coordination between various processes that are critical for proper chromosome segregation in mitosis. Here we show that monopolar spindle 1 (Mps1) kinase, which is essential for the mitotic checkpoint, also controls correction of improper chromosome attachments. We report that Borealin/DasraB, a member of the complex that regulates the Aurora B kinase, is directly phosphorylated by Mps1 on residues that are crucial for Aurora B activity and chromosome alignment. As a result, cells lacking Mps1 kinase activity fail to efficiently align chromosomes due to impaired Aurora B function at centromeres, leaving improper attachments uncorrected. Strikingly, Borealin/DasraB bearing phosphomimetic mutations restores Aurora B activity and alignment in Mps1-depleted cells. Mps1 thus coordinates attachment error correction and checkpoint signaling, two crucial responses to unproductive chromosome attachments.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Cromosomas Humanos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Alelos , Aurora Quinasa B , Aurora Quinasas , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Activación Enzimática , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mutación , Fosforilación , Plásmidos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/metabolismo , Huso Acromático/metabolismo , Transfección
9.
Mol Cell ; 57(5): 824-835, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25661489

RESUMEN

Regulated recruitment of the kinase-adaptor complex BUB1/BUB3 to kinetochores is crucial for correcting faulty chromosome-spindle attachments and for spindle assembly checkpoint (SAC) signaling. BUB1/BUB3 localizes to kinetochores by binding phosphorylated MELT motifs (MELpT) in the kinetochore scaffold KNL1. Human KNL1 has 19 repeats that contain a MELT-like sequence. The repeats are, however, larger than MELT, and repeat sequences can vary significantly. Using systematic screening, we show that only a limited number of repeats is "active." Repeat activity correlates with the presence of a vertebrate-specific SHT motif C-terminal to the MELT sequence. SHT motifs are phosphorylated by MPS1 in a manner that requires prior phosphorylation of MELT. Phospho-SHT (SHpT) synergizes with MELpT in BUB3/BUB1 binding in vitro and in cells, and human BUB3 mutated in a predicted SHpT-binding surface cannot localize to kinetochores. Our data show sequential multisite regulation of the KNL1-BUB1/BUB3 interaction and provide mechanistic insight into evolution of the KNL1-BUB3 interface.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Immunoblotting , Cinetocoros/efectos de los fármacos , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas Asociadas a Microtúbulos/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Nocodazol/farmacología , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Interferencia de ARN , Secuencias Repetitivas de Aminoácido/genética , Homología de Secuencia de Aminoácido , Imagen de Lapso de Tiempo , Moduladores de Tubulina/farmacología
10.
Mol Cell ; 53(5): 843-53, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24582498

RESUMEN

During the cell cycle, DNA duplication in S phase must occur before a cell divides in mitosis. In the intervening G2 phase, mitotic inducers accumulate, which eventually leads to a switch-like rise in mitotic kinase activity that triggers mitotic entry. However, when and how activation of the signaling network that promotes the transition to mitosis occurs remains unclear. We have developed a system to reduce cell-cell variation and increase accuracy of fluorescence quantification in single cells. This allows us to use immunofluorescence of endogenous marker proteins to assess kinetics from fixed cells. We find that mitotic phosphorylations initially occur at the completion of S phase, showing that activation of the mitotic entry network does not depend on protein accumulation through G2. Our data show insights into how mitotic entry is linked to the completion of S phase and forms a quantitative resource for mathematical models of the human cell cycle.


Asunto(s)
Fase G2/genética , Mitosis/genética , Fase S/genética , Proteínas Bacterianas/química , Ciclo Celular , Línea Celular Tumoral , Centrosoma/metabolismo , Replicación del ADN , Fibronectinas/química , Marcadores Genéticos , Humanos , Procesamiento de Imagen Asistido por Computador , Cinética , Cinetocoros/química , Proteínas Luminiscentes/química , Microscopía Fluorescente , Modelos Teóricos , Fosforilación , ARN Interferente Pequeño/metabolismo , Factores de Tiempo
11.
Proc Natl Acad Sci U S A ; 116(26): 12873-12882, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31127038

RESUMEN

The emergence of eukaryotes from ancient prokaryotic lineages embodied a remarkable increase in cellular complexity. While prokaryotes operate simple systems to connect DNA to the segregation machinery during cell division, eukaryotes use a highly complex protein assembly known as the kinetochore. Although conceptually similar, prokaryotic segregation systems and the eukaryotic kinetochore are not homologous. Here we investigate the origins of the kinetochore before the last eukaryotic common ancestor (LECA) using phylogenetic trees, sensitive profile-versus-profile homology detection, and structural comparisons of its protein components. We show that LECA's kinetochore proteins share deep evolutionary histories with proteins involved in a few prokaryotic systems and a multitude of eukaryotic processes, including ubiquitination, transcription, and flagellar and vesicular transport systems. We find that gene duplications played a major role in shaping the kinetochore; more than half of LECA's kinetochore proteins have other kinetochore proteins as closest homologs. Some of these have no detectable homology to any other eukaryotic protein, suggesting that they arose as kinetochore-specific folds before LECA. We propose that the primordial kinetochore evolved from proteins involved in various (pre)eukaryotic systems as well as evolutionarily novel folds, after which a subset duplicated to give rise to the complex kinetochore of LECA.


Asunto(s)
Evolución Molecular , Cinetocoros/química , Filogenia , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Eucariontes/clasificación , Eucariontes/genética , Duplicación de Gen , Cinetocoros/clasificación , Proteínas de Microtúbulos/química , Proteínas de Microtúbulos/genética , Homología de Secuencia de Aminoácido
12.
J Cell Sci ; 132(12)2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31138679

RESUMEN

The spindle assembly checkpoint (SAC) ensures proper chromosome segregation by monitoring kinetochore-microtubule interactions. SAC proteins are shed from kinetochores once stable attachments are achieved. Human kinetochores consist of hundreds of SAC protein recruitment modules and bind up to 20 microtubules, raising the question of how the SAC responds to intermediate attachment states. We show that one protein module ('RZZS-MAD1-MAD2') of the SAC is removed from kinetochores at low microtubule occupancy and remains absent at higher occupancies, while another module ('BUB1-BUBR1') is retained at substantial levels irrespective of attachment states. These behaviours reflect different silencing mechanisms: while BUB1 displacement is almost fully dependent on MPS1 inactivation, MAD1 (also known as MAD1L1) displacement is not. Artificially tuning the affinity of kinetochores for microtubules further shows that ∼50% occupancy is sufficient to shed MAD2 and silence the SAC. Kinetochores thus respond as a single unit to shut down SAC signalling at submaximal occupancy states, but retain one SAC module. This may ensure continued SAC silencing on kinetochores with fluctuating occupancy states while maintaining the ability for fast SAC re-activation.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Humanos , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología
13.
Nature ; 521(7550): 43-7, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25924068

RESUMEN

Crypt stem cells represent the cells of origin for intestinal neoplasia. Both mouse and human intestinal stem cells can be cultured in medium containing the stem-cell-niche factors WNT, R-spondin, epidermal growth factor (EGF) and noggin over long time periods as epithelial organoids that remain genetically and phenotypically stable. Here we utilize CRISPR/Cas9 technology for targeted gene modification of four of the most commonly mutated colorectal cancer genes (APC, P53 (also known as TP53), KRAS and SMAD4) in cultured human intestinal stem cells. Mutant organoids can be selected by removing individual growth factors from the culture medium. Quadruple mutants grow independently of all stem-cell-niche factors and tolerate the presence of the P53 stabilizer nutlin-3. Upon xenotransplantation into mice, quadruple mutants grow as tumours with features of invasive carcinoma. Finally, combined loss of APC and P53 is sufficient for the appearance of extensive aneuploidy, a hallmark of tumour progression.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Intestinos/patología , Mutación/genética , Organoides/metabolismo , Organoides/patología , Células Madre/patología , Aneuploidia , Animales , Sistemas CRISPR-Cas , Niño , Preescolar , Neoplasias Colorrectales/metabolismo , Femenino , Genes APC , Genes p53/genética , Xenoinjertos , Humanos , Imidazoles , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Ratones , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Trasplante de Neoplasias , Piperazinas , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína Smad4/deficiencia , Nicho de Células Madre/fisiología , Células Madre/metabolismo
14.
Bioessays ; 41(5): e1900006, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31026339

RESUMEN

Comparative genomics has proven a fruitful approach to acquire many functional and evolutionary insights into core cellular processes. Here it is argued that in order to perform accurate and interesting comparative genomics, one first and foremost has to be able to recognize, postulate, and revise different evolutionary scenarios. After all, these studies lack a simple protocol, due to different proteins having different evolutionary dynamics and demanding different approaches. The authors here discuss this challenge from a practical (what are the observations?) and conceptual (how do these indicate a specific evolutionary scenario?) viewpoint, with the aim to guide investigators who want to analyze the evolution of their protein(s) of interest. By sharing how the authors draft, test, and update such a scenario and how it directs their investigations, the authors hope to illuminate how to execute molecular evolution studies and how to interpret them. Also see the video abstract here https://youtu.be/VCt3l2pbdbQ.


Asunto(s)
Biología Computacional/métodos , Evolución Molecular , Proteínas/genética , Proteínas de Caenorhabditis elegans/genética , Bases de Datos de Proteínas , Células Eucariotas , Genómica/métodos , Humanos , Filogenia , Dominios Proteicos , Proteínas/química
15.
Chromosoma ; 128(3): 331-354, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31037469

RESUMEN

The monopolin complex is a multifunctional molecular crosslinker, which in S. pombe binds and organises mitotic kinetochores to prevent aberrant kinetochore-microtubule interactions. In the budding yeast S. cerevisiae, whose kinetochores bind a single microtubule, the monopolin complex crosslinks and mono-orients sister kinetochores in meiosis I, enabling the biorientation and segregation of homologs. Here, we show that both the monopolin complex subunit Csm1 and its binding site on the kinetochore protein Dsn1 are broadly distributed throughout eukaryotes, suggesting a conserved role in kinetochore organisation and function. We find that budding yeast Csm1 binds two conserved motifs in Dsn1, one (termed Box 1) representing the ancestral, widely conserved monopolin binding motif and a second (termed Box 2-3) with a likely role in enforcing specificity of sister kinetochore crosslinking. We find that Box 1 and Box 2-3 bind the same conserved hydrophobic cavity on Csm1, suggesting competition or handoff between these motifs. Using structure-based mutants, we also find that both Box 1 and Box 2-3 are critical for monopolin function in meiosis. We identify two conserved serine residues in Box 2-3 that are phosphorylated in meiosis and whose mutation to aspartate stabilises Csm1-Dsn1 binding, suggesting that regulated phosphorylation of these residues may play a role in sister kinetochore crosslinking specificity. Overall, our results reveal the monopolin complex as a broadly conserved kinetochore organiser in eukaryotes, which budding yeast have co-opted to mediate sister kinetochore crosslinking through the addition of a second, regulatable monopolin binding interface.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Eucariontes/genética , Eucariontes/metabolismo , Evolución Molecular , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Mol Cancer ; 17(1): 23, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29448935

RESUMEN

Germline mutations in BUB1 and BUB3 have been reported to increase the risk of developing colorectal cancer (CRC) at young age, in presence of variegated aneuploidy and reminiscent dysmorphic traits of mosaic variegated aneuploidy syndrome. We performed a mutational analysis of BUB1 and BUB3 in 456 uncharacterized mismatch repair-proficient hereditary non-polyposis CRC families and 88 polyposis cases. Four novel or rare germline variants, one splice-site and three missense, were identified in four families. Neither variegated aneuploidy nor dysmorphic traits were observed in carriers. Evident functional effects in the heterozygous form were observed for c.1965-1G>A, but not for c.2296G>A (p.E766K), in spite of the positive co-segregation in the family. BUB1 c.2473C>T (p.P825S) and BUB3 c.77C>T (p.T26I) remained as variants of uncertain significance. As of today, the rarity of functionally relevant mutations identified in familial and/or early onset series does not support the inclusion of BUB1 and BUB3 testing in routine genetic diagnostics of familial CRC.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Proteínas de Ciclo Celular/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Mutación de Línea Germinal , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático/genética , Proteínas de Ciclo Celular/química , Humanos , Modelos Moleculares , Linaje , Proteínas de Unión a Poli-ADP-Ribosa/química , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química
17.
J Cell Sci ; 128(16): 2975-82, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26148513

RESUMEN

Mitotic chromosome segregation is initiated by the anaphase promoting complex/cyclosome (APC/C) and its co-activator CDC20 (forming APC/C(CDC20)). APC/C(CDC20) is inhibited by the spindle assembly checkpoint (SAC) when chromosomes have not attached to spindle microtubules. Unattached kinetochores catalyze the formation of a diffusible APC/C(CDC20) inhibitor that comprises BUBR1 (also known as BUB1B), BUB3, MAD2 (also known as MAD2L1) and a second molecule of CDC20. Recruitment of these proteins to the kinetochore, as well as SAC activation, rely on the mitotic kinase BUB1, but the molecular mechanism by which BUB1 accomplishes this in human cells is unknown. We show that kinetochore recruitment of BUBR1 and BUB3 by BUB1 is dispensable for SAC activation. Unlike its yeast and nematode orthologs, human BUB1 does not associate stably with the MAD2 activator MAD1 (also known as MAD1L1) and, although required for accelerating the loading of MAD1 onto kinetochores, BUB1 is dispensable for the maintenance of steady-state levels of MAD1 there. Instead, we identify a 50-amino-acid segment that harbors the recently reported ABBA motif close to a KEN box as being crucial for the role of BUB1 in SAC signaling. The presence of this segment correlates with SAC activity and efficient binding of CDC20 but not of MAD1 to kinetochores.


Asunto(s)
Proteínas Cdc20/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/genética , Humanos , Cinetocoros/metabolismo , Mitosis/genética , Proteínas Nucleares/genética , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/genética
18.
Adv Exp Med Biol ; 1002: 69-91, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28600783

RESUMEN

The cell cycle culminates in mitosis with the purpose of dividing the cell's DNA content equally over two daughter cells. Error-free segregation relies on correct connections between chromosomes and spindle microtubules. Kinetochores are complex multi-protein assemblies that mediate these connections and are the platforms for attachment-error-correction and spindle assembly checkpoint signaling. Proper kinetochore function is therefore key in preventing aneuploidization. Mutations in genes encoding kinetochore proteins are associated with several severe developmental disorders associated with microcephaly, and kinetochore defects contribute to chromosomal instability in certain cancers. This chapter gives an overview of the processes necessary for faithful chromosome segregation and how kinetochore malfunction causes various human pathologies.


Asunto(s)
Segregación Cromosómica , Cinetocoros/patología , Microcefalia/patología , Mitosis , Neoplasias/patología , Aneuploidia , Animales , Inestabilidad Cromosómica , Predisposición Genética a la Enfermedad , Humanos , Cinetocoros/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Mutación , Neoplasias/genética , Neoplasias/metabolismo
19.
Proc Natl Acad Sci U S A ; 111(20): 7313-8, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24711418

RESUMEN

The basic machinery that detects DNA damage is the same throughout the cell cycle. Here, we show, in contrast, that reversal of DNA damage responses (DDRs) and recovery are fundamentally different in G1 and G2 phases of the cell cycle. We find that distinct phosphatases are required to counteract the checkpoint response in G1 vs. G2. Whereas WT p53-induced phosphatase 1 (Wip1) promotes recovery in G2-arrested cells by antagonizing p53, it is dispensable for recovery from a G1 arrest. Instead, we identify phosphoprotein phosphatase 4 catalytic subunit (PP4) to be specifically required for cell cycle restart after DNA damage in G1. PP4 dephosphorylates Krüppel-associated box domain-associated protein 1-S473 to repress p53-dependent transcriptional activation of p21 when the DDR is silenced. Taken together, our results show that PP4 and Wip1 are differentially required to counteract the p53-dependent cell cycle arrest in G1 and G2, by antagonizing early or late p53-mediated responses, respectively.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Fosfoproteínas Fosfatasas/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Ciclo Celular , Quinasa de Punto de Control 2/metabolismo , Ciclina B1/metabolismo , ADN/genética , Daño del ADN , Fibroblastos/metabolismo , Fase G1/efectos de la radiación , Fase G2/efectos de la radiación , Humanos , Proteínas Luminiscentes/metabolismo , Mutación , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteína Fosfatasa 2C , Estructura Terciaria de Proteína , Epitelio Pigmentado de la Retina/citología , Telomerasa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA