Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 35(33)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38744265

RESUMEN

Transition metal dichalcogenides (TMDs) with a two-dimensional (2D) structure and semiconducting features are highly favorable for the production of NH3gas sensors. Among the TMD family, WS2, WSe2, MoS2, and MoSe2exhibit high conductivity and a high surface area, along with high availability, reasons for which they are favored in gas-sensing studies. In this review, we have discussed the structure, synthesis, and NH3sensing characteristics of pristine, decorated, doped, and composite-based WS2, WSe2, MoS2, and MoSe2gas sensors. Both experimental and theoretical studies are considered. Furthermore, both room temperature and higher temperature gas sensors are discussed. We also emphasized the gas-sensing mechanism. Thus, this review provides a reference for researchers working in the field of 2D TMD gas sensors.

2.
Sci Rep ; 14(1): 2001, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263207

RESUMEN

In this work, the process of designing and simulating optical sensors based on photonic crystal (PC) micro-ring resonators (MRRs) has been investigated. According to the PC type, different waveguides and resonators can be designed, and various topologies can be proposed from their combination, for optical sensor applications. Here, the investigated MRR is of the symmetrical micro-hexagonal ring resonator (MHRR) type. Different arrays of MHRR arrangement have been designed to investigate their effects on the output spectrum. The results of the design and simulation of different topologies have been analyzed and compared with other numerical researches. Considering all the necessary aspects of PC optical sensors, a detailed and comprehensive algorithm has been presented for designing these devices and choosing the optimal structure. In a more complementary process, the effects of reflector rods have been investigated, which indicates the existence of similarity and compatibility in the design between the distance of reflector rods and the length of MHRRs to obtain the optimal structure. Finally, the effect of different values of lattice constant and radius of dielectric rods on FWHM, transmission (TR) and resonant wavelength is studied, and the most optimal mode is presented. In order to measure the performance of the proposed optimal sensor, its application for gas detection has been analyzed. TR, FWHM, quality factor (QF), sensitivity (S) and figure of merit (FOM) of the proposed sensor were equal to 96%, 0.31 nm, 2636, 6451 nm/RIU and 2960 RIU-1 respectively. An examination of results from similar research indicates a rational and effective approach for generating diverse topologies, aiming to attain the most optimal configuration for optical sensors employing MRRs. Furthermore, employing a systematic design process based on established principles and the proposed algorithm helps prevent arbitrary parameter variations, facilitating the attainment of desired outcomes in a more streamlined and efficient manner. Given the comprehensive nature of this research, it presents a viable solution for designing optical devices based on MRRs for use in optical integrated circuits (OICs) applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA