Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 118(2): 304-323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38265362

RESUMEN

The model moss species Physcomitrium patens has long been used for studying divergence of land plants spanning from bryophytes to angiosperms. In addition to its phylogenetic relationships, the limited number of differential tissues, and comparable morphology to the earliest embryophytes provide a system to represent basic plant architecture. Based on plant-fungal interactions today, it is hypothesized these kingdoms have a long-standing relationship, predating plant terrestrialization. Mortierellaceae have origins diverging from other land fungi paralleling bryophyte divergence, are related to arbuscular mycorrhizal fungi but are free-living, observed to interact with plants, and can be found in moss microbiomes globally. Due to their parallel origins, we assess here how two Mortierellaceae species, Linnemannia elongata and Benniella erionia, interact with P. patens in coculture. We also assess how Mollicute-related or Burkholderia-related endobacterial symbionts (MRE or BRE) of these fungi impact plant response. Coculture interactions are investigated through high-throughput phenomics, microscopy, RNA-sequencing, differential expression profiling, gene ontology enrichment, and comparisons among 99 other P. patens transcriptomic studies. Here we present new high-throughput approaches for measuring P. patens growth, identify novel expression of over 800 genes that are not expressed on traditional agar media, identify subtle interactions between P. patens and Mortierellaceae, and observe changes to plant-fungal interactions dependent on whether MRE or BRE are present. Our study provides insights into how plants and fungal partners may have interacted based on their communications observed today as well as identifying L. elongata and B. erionia as modern fungal endophytes with P. patens.


Asunto(s)
Briófitas , Bryopsida , Micorrizas , Filogenia , Endófitos/metabolismo , Análisis Multinivel , Proteínas de Plantas/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Briófitas/genética , Briófitas/metabolismo , Micorrizas/metabolismo
2.
Gigascience ; 132024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38940768

RESUMEN

BACKGROUND: Colletotrichum fungi infect a wide diversity of monocot and dicot hosts, causing diseases on almost all economically important plants worldwide. Colletotrichum is also a suitable model for studying gene family evolution on a fine scale to uncover events in the genome associated with biological changes. RESULTS: Here we present the genome sequences of 30 Colletotrichum species covering the diversity within the genus. Evolutionary analyses revealed that the Colletotrichum ancestor diverged in the late Cretaceous in parallel with the diversification of flowering plants. We provide evidence of independent host jumps from dicots to monocots during the evolution of Colletotrichum, coinciding with a progressive shrinking of the plant cell wall degradative arsenal and expansions in lineage-specific gene families. Comparative transcriptomics of 4 species adapted to different hosts revealed similarity in gene content but high diversity in the modulation of their transcription profiles on different plant substrates. Combining genomics and transcriptomics, we identified a set of core genes such as specific transcription factors, putatively involved in plant cell wall degradation. CONCLUSIONS: These results indicate that the ancestral Colletotrichum were associated with dicot plants and certain branches progressively adapted to different monocot hosts, reshaping the gene content and its regulation.


Asunto(s)
Colletotrichum , Evolución Molecular , Genoma Fúngico , Transcriptoma , Colletotrichum/genética , Colletotrichum/patogenicidad , Filogenia , Adaptación Fisiológica/genética , Perfilación de la Expresión Génica/métodos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética
3.
Cell Genom ; 4(7): 100586, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38942024

RESUMEN

Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.


Asunto(s)
Agaricales , Genoma Fúngico , Genoma Fúngico/genética , Agaricales/genética , Filogenia , Elementos Transponibles de ADN/genética , Evolución Molecular , Transferencia de Gen Horizontal , Plantas/microbiología , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA