Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396938

RESUMEN

Protection of the coronary arteries during donor heart maintenance is pivotal to improve results and prevent the development of coronary allograft vasculopathy. The effect of hypothermic, oxygenated perfusion (HOP) with the traditional HTK and the novel HTK-N solution on the coronary microvasculature of donation-after-circulatory-death (DCD) hearts is known. However, the effect on the coronary macrovasculature is unknown. Thus, we maintained porcine DCD hearts by HOP with HTK or HTK-N for 4 h, followed by transplantation-equivalent reperfusion with blood for 2 h. Then, we removed the left anterior descending coronary artery (LAD) and compared the endothelial-dependent and -independent vasomotor function of both groups using bradykinin and sodium-nitroprusside (SNP). We also determined the transcriptome of LAD samples using microarrays. The endothelial-dependent relaxation was significantly better after HOP with HTK-N. The endothelial-independent relaxation was comparable between both groups. In total, 257 genes were expressed higher, and 668 genes were expressed lower in the HTK-N group. Upregulated genes/pathways were involved in endothelial and vascular smooth muscle cell preservation and heart development. Downregulated genes were related to ischemia/reperfusion injury, oxidative stress, mitochondrion organization, and immune reaction. The novel HTK-N solution preserves the endothelial function of DCD heart coronary arteries more effectively than traditional HTK.


Asunto(s)
Trasplante de Corazón , Porcinos , Animales , Humanos , Trasplante de Corazón/métodos , Donantes de Tejidos , Corazón , Perfusión , Vasos Coronarios/fisiología , Preservación de Órganos/métodos
2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279260

RESUMEN

Donation after circulatory death (DCD) hearts are predominantly maintained by normothermic blood perfusion (NBP). Nevertheless, it was shown that hypothermic crystalloid perfusion (HCP) is superior to blood perfusion to recondition left ventricular (LV) contractility. However, transcriptomic changes in the myocardium and coronary artery in DCD hearts after HCP and NBP have not been investigated yet. In a pig model, DCD hearts were harvested and maintained for 4 h by NBP (DCD-BP group, N = 8) or HCP with oxygenated histidine-tryptophane-ketoglutarate (HTK) solution (DCD-HTK, N = 8) followed by reperfusion with fresh blood for 2 h. In the DCD group (N = 8), hearts underwent reperfusion immediately after procurement. In the control group (N = 7), no circulatory death was induced. We performed transcriptomics from LV myocardial and left anterior descending (LAD) samples using microarrays (25,470 genes). We applied the Boruta algorithm for variable selection to identify relevant genes. In the DCD-BP group, compared to DCD, six genes were regulated in the myocardium and 1915 genes were regulated in the LAD. In the DCD-HTK group, 259 genes were downregulated in the myocardium and 27 in the LAD; and 52 genes were upregulated in the myocardium and 765 in the LAD, compared to the DCD group. We identified seven genes of relevance for group identification: ITPRIP, G3BP1, ARRDC3, XPO6, NOP2, SPTSSA, and IL-6. NBP resulted in the upregulation of genes involved in mitochondrial calcium accumulation and ROS production, the reduction in microvascular endothelial sprouting, and inflammation. HCP resulted in the downregulation of genes involved in NF-κB-, STAT3-, and SASP-activation and inflammation.


Asunto(s)
Trasplante de Corazón , Porcinos , Animales , Humanos , Trasplante de Corazón/métodos , Vasos Coronarios , Transcriptoma , ADN Helicasas , Donantes de Tejidos , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Miocardio , Perfusión/métodos , Perfilación de la Expresión Génica , Inflamación , Preservación de Órganos/métodos , Muerte
3.
J Transl Med ; 21(1): 799, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946197

RESUMEN

BACKGROUND: Heart transplantation (HTX) is the standard treatment for end-stage heart failure. However, reperfusion following an ischemic period can contribute to myocardial injury. Neutrophil infiltration, along with the subsequent release of tissue-degrading neutrophil elastase (NE)-related serine proteases and oxygen-derived radicals, is associated with adverse graft outcomes. The inhibition of cathepsin C (CatC) has been shown to block NE-related protease activation. We hypothesized that the CatC inhibitor BI-9740 improves graft function after HTX. METHODS: In a rat model of HTX, the recipient Lewis rats were orally administered with either a placebo (n = 12) or BI-9740 (n = 11, 20 mg/kg) once daily for 12 days. Donor hearts from untreated Lewis rats were explanted, preserved in a cardioplegic solution, and subsequently heterotopically implanted. In vivo left-ventricular (LV) graft function was assessed after 1 h of reperfusion. The proteolytic activity of neutrophil serine proteases was determined in bone marrow lysates from BI-9740-treated and control rats. Additionally, myocardial morphological changes were examined, and heart samples underwent immunohistochemistry and western blot analysis. RESULTS: The NE-related proteolytic activity in bone marrow cell lysates was markedly decreased in the BI-9740-treated rats compared to those of the placebo group. Histopathological lesions, elevated CatC and myeloperoxidase-positive cell infiltration, and nitrotyrosine immunoreactivity with an increased number of poly(ADP-ribose) polymerase (PARP)-1-positive cells were lowered in the hearts of animals treated with BI-9740 compared to placebo groups. Regarding the functional parameters of the implanted graft, improvements were observed in both systolic function (LV systolic pressure 110 ± 6 vs 74 ± 6 mmHg; dP/dtmax 2782 ± 149 vs 2076 ± 167 mmHg/s, LV developed pressure, at an intraventricular volume of 200 µl, p < 0.05) and diastolic function in the hearts of BI-9740 treated animals compared with those receiving the only placebo. Furthermore, the administration of BI-9740 resulted in a shorter graft re-beating time compared to the placebo group. However, this study did not provide evidence of DNA fragmentation, the generation of both superoxide anions and hydrogen peroxide, correlating with the absence of protein alterations related to apoptosis, as evidenced by western blot in grafts after HTX. CONCLUSIONS: We provided experimental evidence that pharmacological inhibition of CatC improves graft function following HTX in rats.


Asunto(s)
Proteasas de Cisteína , Trasplante de Corazón , Ratas , Animales , Humanos , Trasplante de Corazón/métodos , Catepsina C , Donantes de Tejidos , Ratas Endogámicas Lew , Corazón , Especies Reactivas de Oxígeno , Serina Proteasas
4.
J Surg Res ; 283: 953-964, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36915024

RESUMEN

INTRODUCTION: Endothelial dysfunction is a potential side effect of brain death (BD). Ischemia/reperfusion (IR) injury during heart transplantation may lead to further endothelial damage. Protective effects of alpha-1-antitrypsin (AAT), a human neutrophil serine protease inhibitor, have been demonstrated against IR injury. We hypothesized that AAT protects brain-dead rats' vascular grafts from IR injury. METHODS: Donor rats were subjected to BD by inflation of a subdural balloon. After 5.5 h, aortic rings were immediately mounted in organ baths (BD, n = 6 rats) or preserved in saline, supplemented either with vehicle (BD-IR, n = 8 rats) or AAT (BD-IR + AAT, n = 14 rats) for 24 h. During organ bath experiment, rings from both IR groups were exposed to hypochlorite to simulate warm reperfusion-associated endothelial injury. Endothelial function was measured ex vivo. Immunohistochemical staining for caspases was carried out and DNA-strand breaks were evaluated using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. Data are presented as median (interquartile range). RESULTS: AAT improved IR-induced decreased maximum endothelium-dependent vasorelaxation to acetylcholine in the BD-IR + AAT aortas compared to the BD-IR group (BD: 83 (9-28) % versus BD-IR: 49 (39-60) % versus BD-IR + AAT: 64 (24-42) %, P < 0.05). Additionally, an increase in the rings' sensitivity to acetylcholine was noted after AAT (pD2-value: BD-IR + AAT: 7.35 (7.06-7.89) versus BD-IR: 6.96 (6.65-7.21), P < 0.05). Caspase-3, -8, -9, and -12 immunoreactivity and the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells were significantly decreased by AAT. CONCLUSIONS: AAT alleviates endothelial dysfunction, prevents increased caspase-3, -8, -9, and -12 levels, and decreases apoptotic DNA breakage due to BD and IR injury. This suggests that AAT treatment may be therapeutically beneficial to reduce IR-induced vascular damage.


Asunto(s)
Muerte Encefálica , Daño por Reperfusión , alfa 1-Antitripsina , Animales , Humanos , Ratas , Encéfalo , Caspasa 3 , ADN Nucleotidilexotransferasa , Isquemia , Daño por Reperfusión/etiología , Daño por Reperfusión/prevención & control , alfa 1-Antitripsina/farmacología
5.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37511318

RESUMEN

The impact of the machine perfusion of donation after circulatory death (DCD) hearts with the novel Custodiol-N solution on diastolic and coronary microvascular dysfunction is unknown. Porcine DCD-hearts were maintained four hours by perfusion with normothermic blood (DCD-B), hypothermic Custodiol (DCD-C), or Custodiol-N (DCD-CN), followed by one hour of reperfusion with fresh blood, including microvascular and contractile evaluation. In another group (DCD group), one hour of reperfusion, including microvascular and contractile evaluation, was performed without a previous maintenance period (all groups N = 5). We measured diastolic function with a balloon catheter and microvascular perfusion by Laser-Doppler-Technology, resulting in Laser-Doppler-Perfusion (LDP). We performed immunohistochemical staining and gene expression analysis. The developed pressure was improved in DCD-C and DCD-CN. The diastolic pressure decrement (DCD-C: -1093 ± 97 mmHg/s; DCD-CN: -1703 ± 329 mmHg/s; DCD-B: -690 ± 97 mmHg/s; p < 0.05) and relative LDP (DCD-CN: 1.42 ± 0.12; DCD-C: 1.11 ± 0.13; DCD-B: 1.22 ± 0.27) were improved only in DCD-CN. In DCD-CN, the expression of eNOS increased, and ICAM and VCAM decreased. Only in DCD-B compared to DCD, the pathways involved in complement and coagulation cascades, focal adhesion, fluid shear stress, and the IL-6 and IL-17 pathways were upregulated. In conclusion, machine perfusion with Custodiol-N improves diastolic and microvascular function and preserves the microvascular endothelium of porcine DCD-hearts.


Asunto(s)
Trasplante de Corazón , Porcinos , Animales , Trasplante de Corazón/métodos , Corazón , Reperfusión , Perfusión/métodos , Donantes de Tejidos , Preservación de Órganos/métodos , Muerte
6.
Am J Physiol Heart Circ Physiol ; 323(1): H204-H222, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35687503

RESUMEN

Investigating the effect of sex on pressure unloading therapy in a clinical scenario is limited by several nonstandardized factors. Hence, we sought to study sex-related similarities and differences under laboratory conditions. Pressure overload was induced in male and female rats by aortic banding (AB) for 6 and 12 wk. Age-matched sham-operated animals served as controls. Pressure unloading was performed by aortic debanding at week 6. Different aspects of myocardial remodeling were characterized by echocardiography, pressure-volume analysis, histology, qRT-PCR, and explorative proteomics. Hypertrophy, increased fetal gene expression, interstitial fibrosis, and prolonged active relaxation were noted in the AB groups at week 6 in both sexes. However, decompensation of systolic function and further deterioration of diastolic function only occurred in male AB rats at week 12. AB induced similar proteomic alterations in both sexes at week 6, whereas characteristic differences were found at week 12. After debanding, regression of hypertrophy and recovery of diastolic function took place to a similar extent in both sexes. Nevertheless, fibrosis, transcription of ß-myosin-to-α-myosin heavy chain ratio, and myocardial proteomic alterations were reduced to a greater degree in females than in males. Debanding exposed anti-remodeling properties in both sexes and prevented the functional decline in males. Female sex is associated with greater reversibility of fibrosis, fetal gene expression, and proteomic alterations. Nevertheless, pressure unloading exposes a more pronounced anti-remodeling effect on the functional level in males, which is attributed to the more progressive functional deterioration in AB animals.NEW & NOTEWORTHY The present study is the first to assess the role of sex on pressure unloading-induced reverse and anti-remodeling in a rat model of aortic banding and debanding. Our data indicate that female sex is associated with a greater reversibility of fibrosis, fetal gene expression, and proteomic alterations compared with males. Nevertheless, pressure unloading exposes more anti-remodeling effect on the functional level in males, which is attributed to the more rapid functional deterioration in aortic-banded animals.


Asunto(s)
Hipertrofia Ventricular Izquierda , Proteómica , Animales , Aorta , Femenino , Fibrosis , Masculino , Miocardio/patología , Ratas , Remodelación Ventricular
7.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806458

RESUMEN

Demand for organs is increasing while the number of donors remains constant. Nevertheless, not all organs are utilized due to the limited time window for heart transplantation (HTX). Therefore, we aimed to evaluate whether an iron-chelator-supplemented Bretschneider solution could protect the graft in a clinically relevant canine model of HTX with prolonged ischemic storage. HTX was performed in foxhounds. The ischemic time was standardized to 4 h, 8 h, 12 h or 16 h, depending on the experimental group. Left ventricular (LV) and vascular function were measured. Additionally, the myocardial high energy phosphate and iron content and the in-vitro myocyte force were evaluated. Iron chelator supplementation proved superior at a routine preservation time of 4 h, as well as for prolonged times of 8 h and longer. The supplementation groups recovered quickly compared to their controls. The LV function was preserved and coronary blood flow increased. This was also confirmed by in vitro myocyte force and vasorelaxation experiments. Additionally, the biochemical results showed significantly higher adenosine triphosphate content in the supplementation groups. The iron chelator LK614 played an important role in this mechanism by reducing the chelatable iron content. This study shows that an iron-chelator-supplemented Bretschneider solution effectively prevents myocardial/endothelial damage during short- as well as long-term conservation.


Asunto(s)
Trasplante de Corazón , Preservación de Órganos , Animales , Suplementos Dietéticos , Perros , Glucosa , Corazón , Hierro , Quelantes del Hierro/farmacología , Manitol , Miocardio , Preservación de Órganos/métodos , Cloruro de Potasio , Procaína , Función Ventricular Izquierda
8.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360539

RESUMEN

Vascular ischemia/reperfusion injury (IRI) contributes to graft failure and adverse clinical outcomes following coronary artery bypass grafting. Sodium-glucose-cotransporter (SGLT)-2-inhibitors have been shown to protect against myocardial IRI, irrespective of diabetes. We hypothesized that adding canagliflozin (CANA) (an SGLT-2-inhibitor) to saline protects vascular grafts from IRI. Aortic rings from non-diabetic rats were isolated and immediately mounted in organ bath chambers (control, n = 9-10 rats) or underwent cold ischemic preservation in saline, supplemented either with a DMSO vehicle (IR, n = 8-10 rats) or 50µM CANA (IR + CANA, n = 9-11 rats). Vascular function was measured, the expression of 88 genes using PCR-array was analyzed, and feature selection using machine learning was applied. Impaired maximal vasorelaxation to acetylcholine in the IR-group compared to controls was significantly ameliorated by CANA (IR 31.7 ± 3.2% vs. IR + CANA 51.9 ± 2.5%, p < 0.05). IR altered the expression of 17 genes. Ccl2, Ccl3, Ccl4, CxCr4, Fos, Icam1, Il10, Il1a and Il1b have been found to have the highest interaction. Compared to controls, IR significantly upregulated the mRNA expressions of Il1a and Il6, which were reduced by 1.5- and 1.75-fold with CANA, respectively. CANA significantly prevented the upregulation of Cd40, downregulated NoxO1 gene expression, decreased ICAM-1 and nitrotyrosine, and increased PECAM-1 immunoreactivity. CANA alleviates endothelial dysfunction following IRI.


Asunto(s)
Canagliflozina/farmacología , Endotelio Vascular/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Daño por Reperfusión/complicaciones , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Enfermedades Vasculares/prevención & control , Vasodilatación/efectos de los fármacos , Animales , Endotelio Vascular/patología , Técnicas In Vitro , Masculino , Neovascularización Patológica/etiología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Ratas , Ratas Wistar , Enfermedades Vasculares/etiología , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología
9.
Am J Transplant ; 20(10): 2847-2856, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32162462

RESUMEN

Hearts are usually procured from brain-dead (BD) donors. However, brain death may induce hemodynamic instability, which may contribute to posttransplant graft dysfunction. We hypothesized that BD-donor heart preservation with a conditioned medium (CM) from mesenchymal stem cells (MSCs) would improve graft function after transplantation. Additionally, we explored the PI3K pathway's potential role. Rat MSCs-derived CM was used for conservation purposes. Donor rats were either exposed to sham operation or brain death by inflation of a subdural balloon-catheter for 5.5 hours. Then, the hearts were explanted, stored in cardioplegic solution-supplemented with either a medium vehicle (BD and sham), CM (BD + CM), or LY294002, an inhibitor of PI3K (BD + CM + LY), and finally transplanted. Systolic performance and relaxation parameters were significantly reduced in BD-donors compared to sham. After transplantation, systolic and diastolic functions were significantly decreased, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells and endonuclease G positive cells were increased in the BD-group compared to sham. Preservation of BD-donor hearts with CM resulted in a recovery of systolic graft function (dP/dtmax : BD + CM: 3148 ± 178 vs BD: 2192 ± 94 mm Hg/s at 110 µL, P < .05) and reduced apoptosis. LY294002 partially lowered graft protection afforded by CM in the BD group. Our data suggest that PI3K/Akt pathway is not the primary mechanism of action of CM in improving posttransplant cardiac contractility and preventing caspase-independent apoptosis.


Asunto(s)
Trasplante de Corazón , Células Madre Mesenquimatosas , Animales , Encéfalo , Muerte Encefálica , Medios de Cultivo Condicionados , Humanos , Fosfatidilinositol 3-Quinasas , Ratas , Donantes de Tejidos , Función Ventricular Izquierda
10.
J Mol Cell Cardiol ; 129: 208-218, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30844361

RESUMEN

AIM: Here we aimed at investigating the relation between left ventricular (LV) contractility and myofilament function during the development and progression of pressure overload (PO)-induced LV myocardial hypertrophy (LVH). METHODS: Abdominal aortic banding (AB) was performed to induce PO in rats for 6, 12 and 18 weeks. Sham operated animals served as controls. Structural and molecular alterations were investigated by serial echocardiography, histology, quantitative real-time PCR and western blot. LV function was assessed by pressure-volume analysis. Force measurement was carried out in permeabilized cardiomyocytes. RESULTS: AB resulted in the development of pathological LVH as indicated by increased heart weight-to-tibial length ratio, LV mass index, cardiomyocyte diameter and fetal gene expression. These alterations were already present at early stage of LVH (AB-week6). Furthermore, at more advanced stages (AB-week12, AB-week18), myocardial fibrosis and chamber dilatation were also observed. From a hemodynamic point of view, the AB-wk6 group was associated with increased LV contractility, maintained ventriculo-arterial coupling (VAC) and preserved systolic function. In the same experimental group, increased myofilament Ca2+ sensitivity (pCa50) and hyperphosphorylation of cardiac troponin-I (cTnI) at Threonine-144 was detected. In contrast, in the AB-wk12 and AB-wk18 groups, the initial augmentation of LV contractility, as well as the increased myofilament Ca2+ sensitivity and cTnI (Threonine-144) hyperphosphorylation diminished, leading to impaired VAC and reduced systolic performance. Strong correlation was found between LV contractility parameters and myofilament Ca2+-sensitivity among the study groups. CONCLUSION: Changes in myofilament Ca2+ sensitivity might underlie the alterations in LV contractility during the development and progression of PO-induced LVH.


Asunto(s)
Calcio/metabolismo , Progresión de la Enfermedad , Hipertrofia Ventricular Izquierda/fisiopatología , Contracción Miocárdica , Miofibrillas/metabolismo , Presión , Función Ventricular Izquierda , Animales , Arterias/fisiopatología , Biomarcadores/metabolismo , Proteínas Portadoras/metabolismo , Diástole , Fibrosis , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Masculino , Fosforilación , Ratas Sprague-Dawley , Sístole , Troponina I/metabolismo
11.
J Transl Med ; 17(1): 127, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992077

RESUMEN

BACKGROUND: The sodium-glucose cotransporter-2 (SGLT2) inhibitor canagliflozin has been shown to reduce major cardiovascular events in type 2 diabetic patients, with a pronounced decrease in hospitalization for heart failure (HF) especially in those with HF at baseline. These might indicate a potent direct cardioprotective effect, which is currently incompletely understood. We sought to characterize the cardiovascular effects of acute canagliflozin treatment in healthy and infarcted rat hearts. METHODS: Non-diabetic male rats were subjected to sham operation or coronary artery occlusion for 30 min, followed by 120 min reperfusion in vivo. Vehicle or canagliflozin (3 µg/kg bodyweight) was administered as an intravenous bolus 5 min after the onset of ischemia. Rats underwent either infarct size determination with serum troponin-T measurement, or functional assessment using left ventricular (LV) pressure-volume analysis. Protein, mRNA expressions, and 4-hydroxynonenal (HNE) content of myocardial samples from sham-operated and infarcted rats were investigated. In vitro organ bath experiments with aortic rings from healthy rats were performed to characterize a possible effect of canagliflozin on vascular function. RESULTS: Acute treatment with canagliflozin significantly reduced myocardial infarct size compared to vehicle (42.5 ± 2.9% vs. 59.3 ± 4.2%, P = 0.006), as well as serum troponin-T levels. Canagliflozin therapy alleviated LV systolic and diastolic dysfunction following myocardial ischemia-reperfusion injury (IRI), and preserved LV mechanoenergetics. Western blot analysis revealed an increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric-oxide synthase (eNOS), which were not disease-specific effects. Canagliflozin elevated the phosphorylation of Akt only in infarcted hearts. Furthermore, canagliflozin reduced the expression of apoptotic markers (Bax/Bcl-2 ratio) and that of genes related to myocardial nitro-oxidative stress. In addition, treated hearts showed significantly lower HNE positivity. Organ bath experiments with aortic rings revealed that preincubation with canagliflozin significantly enhanced endothelium-dependent vasodilation in vitro, which might explain the slight LV afterload reducing effect of canagliflozin in healthy rats in vivo. CONCLUSIONS: Acute intravenous administration of canagliflozin after the onset of ischemia protects against myocardial IRI. The medication enhances endothelium dependent vasodilation independently of antidiabetic action. These findings might further contribute to our understanding of the cardiovascular protective effects of canagliflozin reported in clinical trials.


Asunto(s)
Canagliflozina/uso terapéutico , Cardiotónicos/uso terapéutico , Endotelio/patología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Vasodilatación , Aldehídos/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/patología , Aorta/fisiopatología , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Glucemia/metabolismo , Canagliflozina/farmacología , Cardiotónicos/farmacología , Diástole/efectos de los fármacos , Endotelio/efectos de los fármacos , Endotelio/fisiopatología , Glucosuria/complicaciones , Glucosuria/fisiopatología , Riñón/efectos de los fármacos , Riñón/fisiopatología , Hígado/efectos de los fármacos , Hígado/fisiopatología , Masculino , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/fisiopatología , Estrés Nitrosativo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Sístole/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos
12.
Pharmacol Res ; 150: 104503, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31629091

RESUMEN

The major source of heart transplantation comes from brain-dead (BD) donors. However, brain death and myocardial ischemia/reperfusion injury during transplantation may lead to cardiac dysfunction and hemodynamic instability. A previous work demonstrated that pre-treatment of BD donors with dopamine improved the graft survival of heart allograft in recipient after transplantation. However, low-dose dopamine treatment might result in tachycardia and hypertension. Our previous experimental study showed that pre-treatment of BD donor rats with the dopamine derivate N-octanoyl dopamine (NOD), devoid of any hemodynamic effects, improved graft function after transplantation. Herein, we hypothesized that NOD confers superior myocardial protection than dopamine, in terms of graft function. Male Lewis donor rats were either subjected to sham-operation or brain death via a subdurally placed balloon followed by 5.5 h monitoring. Then, the hearts were explanted and heterotopically transplanted into Lewis recipient rats. Shortly before the onset of reperfusion, continuous intravenous infusion of either NOD (14.7 µg/kg/min, BD + NOD group, n = 9), dopamine (10 µg/kg/min, BD + Dopamine group, n = 8) or physiological saline vehicle (sham, n = 9 and BD group, n = 9) were administered to the recipient rats. In vivo left-ventricular (LV) graft function was evaluated after 1.5 h reperfusion. Additionally, immunohistochemical detection of 4-hydroxy-2-nonenal (HNE, an indicator of oxidative stress) and nitrotyrosine (a nitro-oxidative stress marker), was performed. After heart transplantation, systolic and diastolic functions were significantly decreased in the BD group compared to sham. Treatment with NOD but not dopamine, resulted in better LV graft systolic functional recovery (LV systolic pressure BD + NOD 90 ±â€¯8 vs BD + Dopamine 66 ±â€¯5 vs BD 65 ±â€¯4 mmHg; maximum rate of rise of LV pressure dP/dtmax BD + NOD 2686 ±â€¯225 vs BD + Dopamine 2243 ±â€¯70 vs BD 1999 ±â€¯147 mmHg/s, at an intraventricular volume of 140 µl, p < 0.05) and myocardial work compared to BD group. The re-beating time (time to restoration of heartbeat) was significantly shorter in BD + NOD group than that of BD hearts (32 ±â€¯4 s vs. 48 ±â€¯6 s, p < 0.05), Dopamine treatment had no impact on all of these parameters. Furthermore, NOD as well as dopamine decreased HNE and nitrotyrosine immunoreactivity to the same level. NOD is superior to dopamine in terms of protecting LV graft contractile function when administered to the heart transplant recipients from BD donors.


Asunto(s)
Dopamina/análogos & derivados , Trasplante de Corazón , Sustancias Protectoras/uso terapéutico , Animales , Muerte Encefálica , Dopamina/uso terapéutico , Supervivencia de Injerto/efectos de los fármacos , Masculino , Ratas Endogámicas Lew , Donantes de Tejidos , Función Ventricular Izquierda/efectos de los fármacos
13.
Proc Natl Acad Sci U S A ; 113(2): E155-64, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26715748

RESUMEN

Autoimmune response to cardiac troponin I (TnI) induces inflammation and fibrosis in the myocardium. High-mobility group box 1 (HMGB1) is a multifunctional protein that exerts proinflammatory activity by mainly binding to receptor for advanced glycation end products (RAGE). The involvement of the HMGB1-RAGE axis in the pathogenesis of inflammatory cardiomyopathy is yet not fully understood. Using the well-established model of TnI-induced experimental autoimmune myocarditis (EAM), we demonstrated that both local and systemic HMGB1 protein expression was elevated in wild-type (wt) mice after TnI immunization. Additionally, pharmacological inhibition of HMGB1 using glycyrrhizin or anti-HMGB1 antibody reduced inflammation in hearts of TnI-immunized wt mice. Furthermore, RAGE knockout (RAGE-ko) mice immunized with TnI showed no structural or physiological signs of cardiac impairment. Moreover, cardiac overexpression of HMGB1 using adeno-associated virus (AAV) vectors induced inflammation in the hearts of both wt and RAGE-ko mice. Finally, patients with myocarditis displayed increased local and systemic HMGB1 and soluble RAGE (sRAGE) expression. Together, our study highlights that HMGB1 and its main receptor, RAGE, appear to be crucial factors in the pathogenesis of TnI-induced EAM, because inhibition of HMGB1 and ablation of RAGE suppressed inflammation in the heart. Moreover, the proinflammatory effect of HMGB1 is not necessarily dependent on RAGE only. Other receptors of HMGB1 such as Toll-like receptors (TLRs) may also be involved in disease pathogenesis. These findings could be confirmed by the clinical relevance of HMGB1 and sRAGE. Therefore, blockage of one of these molecules might represent a novel therapeutic strategy in the treatment of autoimmune myocarditis and inflammatory cardiomyopathy.


Asunto(s)
Proteína HMGB1/metabolismo , Inflamación/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Biopsia , Dependovirus/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Fibrosis , Adyuvante de Freund/inmunología , Proteína HMGB1/sangre , Cardiopatías/sangre , Cardiopatías/complicaciones , Cardiopatías/genética , Cardiopatías/patología , Pruebas de Función Cardíaca , Inmunización , Factores Inmunológicos/farmacología , Inflamación/sangre , Inflamación/complicaciones , Inflamación/patología , Mediadores de Inflamación/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Ratones Noqueados , Miocarditis/complicaciones , Miocarditis/genética , Miocarditis/patología , Miocarditis/fisiopatología , Miocardio/metabolismo , Miocardio/patología , FN-kappa B/metabolismo , Unión Proteica/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/sangre , Transducción de Señal/efectos de los fármacos , Receptores Toll-Like/metabolismo , Transcripción Genética/efectos de los fármacos , Troponina/metabolismo , Regulación hacia Arriba/efectos de los fármacos
14.
Am J Physiol Heart Circ Physiol ; 315(3): H502-H511, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29799277

RESUMEN

Sex differences in pressure overload (PO)-induced left ventricular (LV) myocardial hypertrophy (LVH) have been intensely investigated. Nevertheless, sex-related disparities of LV hemodynamics in LVH were not examined in detail. Therefore, we aimed to provide a detailed characterization of distinct aspects of LV function in male and female rats during different stages of LVH. Banding of the abdominal aorta (AB) was performed to induce PO for 6 or 12 wk in male and female rats. Control animals underwent sham operation. The development of LVH was followed by serial echocardiography. Cardiac function was assessed by pressure-volume analysis. Cardiomyocyte hypertrophy and fibrosis were evaluated by histology. At week 6, increased LV mass index, heart weight-to-tibial length, cardiomyocyte diameter, concentric LV geometry, and moderate interstitial fibrosis were detected in both male and female AB rats, indicating the development of an early stage of LVH. Functionally, at this time, impaired active relaxation, increased contractility, and preserved ventricular-arterial coupling were observed in the AB groups in both sexes. In contrast, at week 12, progressive deterioration of LVH-associated structural and functional alterations occurred in male but not female animals with sustained PO. Accordingly, at this later stage, LVH was associated with eccentric remodeling, exacerbated fibrosis, and increased chamber stiffness in male AB rats. Furthermore, augmented contractility declined in male but not female AB animals, resulting in contractility-afterload mismatch. Maintained contractility augmentation, preserved ventricular-arterial coupling, and better myocardial compliance in female rats contribute to sex differences in LV function during the progression of PO-induced LVH. NEW & NOTEWORTHY We investigated sex differences in pressure overload-induced left ventricular myocardial hypertrophy for the first time on the functional level by pressure-volume analysis. We found that left ventricular hypertrophy was initially characterized by prolonged active relaxation, increased contractility, and maintained ventricular-arterial coupling in both sexes. However, at a later stage, augmented contractility declined in mate but not female rats, resulting in contractility-afterload mismatch. Furthermore, in male rats, increased myocardial stiffness also contributed to hypertrophy-associated diastolic dysfunction.


Asunto(s)
Hipertrofia Ventricular Izquierda/fisiopatología , Animales , Femenino , Fibrosis , Hemodinámica , Hipertrofia Ventricular Izquierda/patología , Masculino , Contracción Miocárdica , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley , Factores Sexuales
15.
Eur J Vasc Endovasc Surg ; 56(2): 256-263, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29724533

RESUMEN

OBJECTIVES: Ischaemia reperfusion (IR) injury occurs during vascular graft harvesting and implantation during vascular/cardiac surgery. Elevated intracellular cyclic guanosine monophosphate (cGMP) levels contribute to an effective endothelial protection in different pathophysiological conditions. The hypothesis that the phosphodiesterase-5 inhibitor vardenafil would protect vascular grafts against IR injury by upregulating the nitric oxide-cGMP pathway in the vessel wall of the bypass graft was investigated. METHODS: Lewis rats (n = 6-7/group) were divided into Group 1, control; Group 2, donor rats received intravenous saline; Group 3, received intravenous vardenafil (30 µg/kg) 2 h before explantation. Whereas aortic arches of Group 1 were immediately mounted in an organ bath, aortic segments of Groups 2 and 3 were stored for 2 h in saline and transplanted into the abdominal aorta of the recipient. Two hours after transplantation, the implanted grafts were harvested. Endothelium dependent and independent vasorelaxations were investigated. TUNEL, CD-31, ICAM-1, VCAM-1, α-SMA, nitrotyrosine, dihydroethidium and cGMP immunochemistry were also performed. RESULTS: Compared with the control, the saline group showed significantly attenuated endothelium dependent maximal relaxation (Rmax) 2 h after reperfusion, which was significantly improved by vardenafil supplementation (Rmax control, 91 ± 2%; saline 22 ± 2% vs. vardenafil 39 ± 4%, p < .001). Vardenafil pre-treatment significantly reduced DNA fragmentation (control 9 ± 1%, saline 66 ± 8% vs. vardenafil 13 ± 1%, p < .001), nitro-oxidative stress (control 0.8 ± 0.3, saline 7.6 ± 1.3 vs. vardenafil 3.8 ± 1, p = .036), reactive oxygen species level (vardenafil 36 ± 4, control 34 ± 2 vs. saline 43 ± 2, p = .049), prevented vascular smooth muscle cell damage (control 8.5 ± 0.7, saline 4.3 ± 0.6 vs. vardenafil 6.7 ± 0.6, p = .013), decreased ICAM-1 (control 4.1 ± 0.5, saline 7.0 ± 0.9 vs. vardenafil 4.4 ± 0.6, p = .031), and VCAM-1 score (control 4.4 ± 0.4, saline 7.3 ± 1.0 vs. vardenafil 5.2 ± 0.4, p = .046) and increased cGMP score in the aortic wall (control 11.2 ± 0.8, saline 6.5 ± 0.8 vs. vardenafil 8.9 ± 0.6, p = .016). The marker for endothelial integrity (CD-31) was also higher in the vardenafil group (control 74 ± 4%, saline 22 ± 2% vs. vardenafil 40 ± 3%, p = .008). CONCLUSIONS: The results support the view that impairment of intracellular cGMP signalling plays a role in the pathogenesis of the endothelial dysfunction of an arterial graft after bypass surgery, which can effectively be prevented by vardenafil. Its clinical use as preconditioning drug could be a novel approach in vascular/cardiac surgery.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Aorta Torácica/trasplante , Inhibidores de Fosfodiesterasa 5/farmacología , Daño por Reperfusión/prevención & control , Recolección de Tejidos y Órganos , Diclorhidrato de Vardenafil/farmacología , Lesiones del Sistema Vascular/prevención & control , Vasodilatadores/farmacología , Actinas/metabolismo , Animales , Aorta Torácica/enzimología , Aorta Torácica/fisiopatología , Isquemia Fría , GMP Cíclico/metabolismo , Citoprotección , Daño del ADN/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Estrés Nitrosativo/efectos de los fármacos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Ratas Endogámicas Lew , Daño por Reperfusión/enzimología , Daño por Reperfusión/fisiopatología , Transducción de Señal/efectos de los fármacos , Recolección de Tejidos y Órganos/efectos adversos , Tirosina/análogos & derivados , Tirosina/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Lesiones del Sistema Vascular/enzimología , Lesiones del Sistema Vascular/fisiopatología , Isquemia Tibia
16.
Clin Immunol ; 173: 64-75, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27634429

RESUMEN

In myocarditis and dilated cardiomyopathy (DCM) patients the immune system may play an important role in disease progression. In this study, we aimed to identify new antigens as a target for autoimmune response that might play a crucial role in these diseases. Therefore, a peptide-array was used to investigate antibody binding profiles in patients with autoimmune myocarditis or DCM compared to healthy controls and thus to identify disease relevant antigens. To analyze the pathogenicity of the identified antigens, an experimental autoimmune myocarditis (EAM) model was used. Hereby, 3 peptide sequences, derived from myosin-binding-protein-C (MYBPC) fast-type, RNA-binding-protein 20 (RBM20), and dystrophin, showed pathogenic effects on the myocardium of mice. In summary, 3 potentially cardiopathogenic peptides (MYBPC fast-type, RBM20, dystrophin) were identified. Thus, this study could serve as a basis for future investigations aimed at determining further antigens leading to pathogenic effects on the myocardium of DCM as well as myocarditis patients.


Asunto(s)
Autoantígenos/inmunología , Enfermedades Autoinmunes/inmunología , Cardiomiopatía Dilatada/inmunología , Miocarditis/inmunología , Animales , Enfermedades Autoinmunes/patología , Autoinmunidad , Cardiomiopatía Dilatada/patología , Citocinas/genética , Femenino , Humanos , Ratones , Miocarditis/patología , Miocardio/inmunología , Miocardio/patología , Péptidos/inmunología , ARN Mensajero
17.
Am J Physiol Heart Circ Physiol ; 311(3): H592-603, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27342874

RESUMEN

Pressure unloading represents the only effective therapy in increased afterload-induced left ventricular hypertrophy (LVH) as it leads to myocardial reverse remodeling (reduction of increased left ventricular mass, attenuated myocardial fibrosis) and preserved cardiac function. However, the effect of myocardial reverse remodeling on cardiac mechanoenergetics has not been elucidated. Therefore, we aimed to provide a detailed hemodynamic characterization in a rat model of LVH undergoing pressure unloading. Pressure overload was induced in Sprague-Dawley rats by abdominal aortic banding for 6 (AB 6th wk) or 12 wk (AB 12th wk). Sham-operated animals served as controls. Aortic debanding procedure was performed after the 6th experimental week (debanded 12th wk) to investigate the regression of LVH. Pressure unloading resulted in significant reduction of LVH (heart weight-to-tibial length ratio: 0.38 ± 0.01 vs. 0.58 ± 0.02 g/mm, cardiomyocyte diameter: 18.3 ± 0.1 vs. 24.1 ± 0.8 µm debanded 12th wk vs. AB 12th wk, P < 0.05), attenuated the extracellular matrix remodeling (Masson's score: 1.37 ± 0.13 vs. 1.73 ± 0.10, debanded 12th wk vs. AB 12th wk, P < 0.05), provided protection against the diastolic dysfunction, and reversed the maladaptive contractility augmentation (slope of end-systolic pressure-volume relationship: 1.39 ± 0.24 vs. 2.04 ± 0.09 mmHg/µl, P < 0.05 debanded 12th wk vs. AB 6th wk, P < 0.05). In addition, myocardial reverse remodeling was also associated with preserved ventriculoarterial coupling and increased mechanical efficiency (50.6 ± 2.8 vs. 38.9 ± 2.5%, debanded 12th wk vs. AB 12th wk, P < 0.05), indicating a complete functional and mechanoenergetic recovery. According to our best knowledge, this is the first study demonstrating that the regression of LVH is accompanied by maintained cardiac mechanoenergetics.


Asunto(s)
Metabolismo Energético , Hipertrofia Ventricular Izquierda/genética , Contracción Miocárdica , Miocardio/metabolismo , Remodelación Ventricular , Animales , Aorta/cirugía , Western Blotting , Ecocardiografía , Fibrosis , Hemodinámica , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Miocardio/patología , Miocitos Cardíacos/patología , Presión , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Am J Physiol Heart Circ Physiol ; 311(4): H958-H971, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27521423

RESUMEN

The Goto-Kakizaki (GK) rat, a non-obese model of type 2 diabetes mellitus (T2DM), was generated by the selective inbreeding of glucose-intolerant Wistar rats. This is a convenient model for studying diabetes-induced cardiomyopathy independently from the effects of the metabolic syndrome. We investigated the myocardial functional and structural changes and underlying molecular pathomechanisms of short-term and mild T2DM. The presence of DM was confirmed by an impaired oral glucose tolerance in the GK rats compared with the age-matched nondiabetic Wistar rats. Data from cardiac catheterization showed that in GK rats, although the systolic indexes were not altered, the diastolic stiffness was increased compared with nondiabetics (end-diastolic-pressure-volume-relationship: 0.12 ± 0.04 vs. 0.05 ± 0.01 mmHg/µl, P < 0.05). Additionally, DM was associated with left-ventricular hypertrophy and histological evidence of increased myocardial fibrosis. The plasma pro-B-type natriuretic peptide, the cardiac troponin-T, glucose, and the urinary glucose concentrations were significantly higher in GK rats. Among the 125 genes surveyed using PCR arrays, DM significantly altered the expression of five genes [upregulation of natriuretic peptide precursor-A and connective tissue growth factor, downregulation of c-reactive protein, interleukin-1ß, and tumor necrosis factor (TNF)-α mRNA-level]. Of the altered genes, which were evaluated by Western blot, only TNF-α protein expression was significantly decreased. The ECG recordings revealed no significant differences. In conclusion, while systolic dysfunction, myocardial inflammation, and abnormal electrical conduction remain absent, short-term and mild T2DM induce the alteration of cardiac TNF-α at both the mRNA and protein levels. Further assessments are required to reveal if TNF-α plays a role in the early stage of diabetic cardiomyopathy development.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Hipertrofia Ventricular Izquierda/genética , Miocardio/metabolismo , Disfunción Ventricular Izquierda/genética , Función Ventricular Izquierda , Presión Ventricular , Animales , Apoptosis/genética , Factor Natriurético Atrial/genética , Glucemia/metabolismo , Proteína C-Reactiva/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Regulación hacia Abajo , Ecocardiografía , Electrocardiografía , Fibrosis , Prueba de Tolerancia a la Glucosa , Glucosuria , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Inflamación/genética , Interleucina-1beta/genética , Masculino , Miocardio/patología , Péptido Natriurético Encefálico/metabolismo , Estrés Oxidativo/genética , Fragmentos de Péptidos/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Transducción de Señal , Troponina T/metabolismo , Factor de Necrosis Tumoral alfa/genética , Tirosina/análogos & derivados , Tirosina/metabolismo , Regulación hacia Arriba , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
19.
Cardiovasc Diabetol ; 15: 75, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-27153943

RESUMEN

BACKGROUND: Type-2 diabetics have an increased risk of cardiomyopathy, and heart failure is a major cause of death among these patients. Growing evidence indicates that proinflammatory cytokines may induce the development of insulin resistance, and that anti-inflammatory medications may reverse this process. We investigated the effects of the oral administration of zinc and acetylsalicylic acid, in the form of bis(aspirinato)zinc(II)-complex Zn(ASA)2, on different aspects of cardiac damage in Zucker diabetic fatty (ZDF) rats, an experimental model of type-2 diabetic cardiomyopathy. METHODS: Nondiabetic control (ZL) and ZDF rats were treated orally with vehicle or Zn(ASA)2 for 24 days. At the age of 29-30 weeks, the electrical activities, left-ventricular functional parameters and left-ventricular wall thicknesses were assessed. Nitrotyrosine immunohistochemistry, TUNEL-assay, and hematoxylin-eosin staining were performed. The protein expression of the insulin-receptor and PI3K/AKT pathway were quantified by Western blot. RESULTS: Zn(ASA)2-treatment significantly decreased plasma glucose concentration in ZDF rats (39.0 ± 3.6 vs 49.4 ± 2.8 mM, P < 0.05) while serum insulin-levels were similar among the groups. Data from cardiac catheterization showed that Zn(ASA)2 normalized the increased left-ventricular diastolic stiffness (end-diastolic pressure-volume relationship: 0.064 ± 0.008 vs 0.084 ± 0.014 mmHg/µl; end-diastolic pressure: 6.5 ± 0.6 vs 7.9 ± 0.7 mmHg, P < 0.05). Furthermore, ECG-recordings revealed a restoration of prolonged QT-intervals (63 ± 3 vs 83 ± 4 ms, P < 0.05) with Zn(ASA)2. Left-ventricular wall thickness, assessed by echocardiography, did not differ among the groups. However histological examination revealed an increase in the cardiomyocytes' transverse cross-section area in ZDF compared to the ZL rats, which was significantly decreased after Zn(ASA)2-treatment. Additionally, a significant fibrotic remodeling was observed in the diabetic rats compared to ZL rats, and Zn(ASA)2-administered ZDF rats showed a similar collagen content as ZL animals. In diabetic hearts Zn(ASA)2 significantly decreased DNA-fragmentation, and nitro-oxidative stress, and up-regulated myocardial phosphorylated-AKT/AKT protein expression. Zn(ASA)2 reduced cardiomyocyte death in a cellular model of oxidative stress. Zn(ASA)2 had no effects on altered myocardial CD36, GLUT-4, and PI3K protein expression. CONCLUSIONS: We demonstrated that treatment of type-2 diabetic rats with Zn(ASA)2 reduced plasma glucose-levels and prevented diabetic cardiomyopathy. The increased myocardial AKT activation could, in part, help to explain the cardioprotective effects of Zn(ASA)2. The oral administration of Zn(ASA)2 may have therapeutic potential, aiming to prevent/treat cardiac complications in type-2 diabetic patients.


Asunto(s)
Aspirina/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Zinc/farmacocinética , Administración Oral , Animales , Aspirina/administración & dosificación , Aspirina/uso terapéutico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/sangre , Cardiomiopatías Diabéticas/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Masculino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Zucker , Zinc/administración & dosificación
20.
Cardiovasc Diabetol ; 14: 145, 2015 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-26520063

RESUMEN

BACKGROUND: Diabetes mellitus (DM) leads to the development of diabetic cardiomyopathy, which is associated with altered nitric oxide (NO)--soluble guanylate cyclase (sGC)--cyclic guanosine monophosphate (cGMP) signalling. Cardioprotective effects of elevated intracellular cGMP-levels have been described in different heart diseases. In the current study we aimed at investigating the effects of pharmacological activation of sGC in diabetic cardiomyopathy. METHODS: Type-1 DM was induced in rats by streptozotocin. Animals were treated either with the sGC activator cinaciguat (10 mg/kg/day) or with placebo orally for 8 weeks. Left ventricular (LV) pressure-volume (P-V) analysis was used to assess cardiac performance. Additionally, gene expression (qRT-PCR) and protein expression analysis (western blot) were performed. Cardiac structure, markers of fibrotic remodelling and DNA damage were examined by histology, immunohistochemistry and TUNEL assay, respectively. RESULTS: DM was associated with deteriorated cGMP signalling in the myocardium (elevated phosphodiesterase-5 expression, lower cGMP-level and impaired PKG activity). Cardiomyocyte hypertrophy, fibrotic remodelling and DNA fragmentation were present in DM that was associated with impaired LV contractility (preload recruitable stroke work (PRSW): 49.5 ± 3.3 vs. 83.0 ± 5.5 mmHg, P < 0.05) and diastolic function (time constant of LV pressure decay (Tau): 17.3 ± 0.8 vs. 10.3 ± 0.3 ms, P < 0.05). Cinaciguat treatment effectively prevented DM related molecular, histological alterations and significantly improved systolic (PRSW: 66.8 ± 3.6 mmHg) and diastolic (Tau: 14.9 ± 0.6 ms) function. CONCLUSIONS: Cinaciguat prevented structural, molecular alterations and improved cardiac performance of the diabetic heart. Pharmacological activation of sGC might represent a new therapy approach for diabetic cardiomyopathy.


Asunto(s)
Benzoatos/farmacología , Daño del ADN/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Corazón/efectos de los fármacos , Miocardio/patología , Óxido Nítrico/metabolismo , Animales , GMP Cíclico/metabolismo , Cardiomiopatías Diabéticas , Modelos Animales de Enfermedad , Fibrosis , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA