Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nitric Oxide ; 71: 27-31, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29031735

RESUMEN

Experimental work over the past several years has revealed an unexpected abundance of long natural antisense transcripts (NATs) in eukaryotic species. In light of the proposed role of such RNA molecules in the regulation of gene expression in the brain, attention is now focused on specific examples of neuronal NATs. Of particular interest are NATs that are complementary to mRNAs encoding nitric oxide synthase (NOS), the enzyme responsible for production of the important gaseous neurotransmitter nitric oxide (NO). Here we study the temporal expression profile of murine Nos3as NAT in the brain. Notably, Nos3as NAT is known to act as a negative regulator of Nos3 gene expression. The results of our quantitative analysis reveal differential expression of Nos3as NAT during embryonic and post-embryonic stages of development of the brain. Also, they show that the low levels of Nos3as NAT coincides with active neurogenesis. In addition we report on an inverse correlation between the relative expression level of Nos3as NAT and the level of Nos3 protein. Thus our data raise the hypothesis that the Nos3as NAT regulates neurogenesis through suppression of Nos3 gene activity. This idea is further supported by experiments conducted on the olfactory bulbs and cultured neuroblastoma cells.


Asunto(s)
Encéfalo/metabolismo , Neurogénesis/genética , ARN sin Sentido/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Línea Celular Tumoral , Desarrollo Embrionario , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Bulbo Olfatorio/embriología , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , ARN sin Sentido/genética , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo
2.
RNA ; 14(10): 2030-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18820242

RESUMEN

Here, we report on the discovery of a locus in the human genome, which evolved by gene duplication followed by an internal DNA inversion. This locus exhibits high sequence similarity to the gene for the inducible isoform of NOS protein (NOS2A) and is transcribed into a noncoding RNA containing a region of significant antisense homology with the NOS2A mRNA. We show that this antisense transcript (anti-NOS2A RNA) is expressed in different types of brain tumors, including meningiomas and glioblastomas. More importantly, we demonstrate that the expression profiles of the anti-NOS2A RNA and the NOS2A mRNA exhibit concurrent reciprocal changes in undifferentiated human embryonic stem cells (hESCs) and in hESCs induced to differentiate into neurogenic precursors such as neurospheres. As NOS2A has a role in neurogenesis, our results suggest that the anti-NOS2A RNA is involved in the regulation of neuronal differentiation of hESCs through the modulation of NOS2A gene expression.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Regulación Enzimológica de la Expresión Génica , Neuronas/citología , Óxido Nítrico Sintasa de Tipo II/genética , ARN sin Sentido/genética , ARN no Traducido/genética , Secuencia de Bases , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Células Madre Embrionarias/enzimología , Duplicación de Gen , Genoma Humano , Humanos , Datos de Secuencia Molecular , Neuronas/enzimología , ARN Mensajero/genética , Transcripción Genética
3.
FASEB J ; 23(9): 3030-6, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19395478

RESUMEN

A population of glial cells in the central nervous system of the gastropod mollusk Lymnaea stagnalis produces a soluble protein that specifically binds acetylcholine. This protein is named the acetylcholine binding protein (AChBP). Experiments performed in vitro indicated that AChBP inactivates released acetylcholine at cholinergic synapses. On the basis of these observations, a similar in vivo role for AChBP was hypothesized. To fulfill this function, AChBP-expressing glia ought to be located in close proximity to cholinergic synapses in vivo. To examine this, we have analyzed the cellular and subcellular expression of AChBP in the intact CNS. Using a variety of molecular techniques, we demonstrate here that AChBP expression is confined to a subpopulation of glial cells located within the peripheral zone of each of the ganglia constituting the CNS. This zone contains the cell bodies of neurons, but few synapses. Conversely, glial cells that do not express the AChBP are predominantly located in the synapse-rich central neuropile zone but are rare in the cell body zone. Thus, our findings are not compatible with the previous conclusions drawn from in vitro studies and suggest that AChBP functions in vivo as a regulator of nonsynaptic cholinergic transmission.


Asunto(s)
Acetilcolina/fisiología , Proteínas Portadoras/fisiología , Neuritas/química , Sinapsis/química , Transmisión Sináptica/efectos de los fármacos , Acetilcolina/metabolismo , Animales , Proteínas Portadoras/análisis , Sistema Nervioso Central , Moluscos , Neuroglía
4.
Eur J Neurosci ; 28(6): 1157-65, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18783373

RESUMEN

In a number of neuronal models of learning signalling by endogenous nitric oxide (NO), produced by the enzyme NO synthase (NOS), is essential for the formation of long-term memory (LTM). For example, in the molluscan model system Lymnaea, NO is required for LTM formation in the first few hours after one-trial reward conditioning. Furthermore, conditioning leads to transient up-regulation of the NOS gene in identified modulatory neurons, the cerebral giant cells (CGCs), which are known to be involved in LTM formation. In Lymnaea nothing is known however about the structure and localization of the major receptor for NO, the soluble guanylyl cyclase (sGC). Here we report on the cloning and characterization of both alpha and beta subunits of NO-sensitive sGC and show that they are coexpressed in the CGCs. Furthermore, our electrophysiological experiments on isolated CGCs show that these neurons respond to NO by generating a prolonged depolarization of the membrane potential. Moreover, we demonstrate that this depolarization is blocked by ODQ, supporting our hypothesis that it is mediated by sGC.


Asunto(s)
GMP Cíclico/metabolismo , Guanilato Ciclasa/metabolismo , Interneuronas/metabolismo , Memoria/fisiología , Óxido Nítrico/metabolismo , Subunidades de Proteína/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Electrofisiología , Inhibidores Enzimáticos/metabolismo , Guanilato Ciclasa/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Interneuronas/citología , Lymnaea/enzimología , Datos de Secuencia Molecular , Oxadiazoles/metabolismo , Subunidades de Proteína/genética , Quinoxalinas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Alineación de Secuencia , Guanilil Ciclasa Soluble
5.
Sci Rep ; 8(1): 3950, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500383

RESUMEN

Although single-trial induced long-term memories (LTM) have been of major interest in neuroscience, how LTM can form after a single episode of learning remains largely unknown. We hypothesized that the removal of molecular inhibitory constraints by microRNAs (miRNAs) plays an important role in this process. To test this hypothesis, first we constructed small non-coding RNA (sncRNA) cDNA libraries from the CNS of Lymnaea stagnalis subjected to a single conditioning trial. Then, by next generation sequencing of these libraries, we identified a specific pool of miRNAs regulated by training. Of these miRNAs, we focussed on Lym-miR-137 whose seed region shows perfect complementarity to a target sequence in the 3' UTR of the mRNA for CREB2, a well-known memory repressor. We found that Lym-miR-137 was transiently up-regulated 1 h after single-trial conditioning, preceding a down-regulation of Lym-CREB2 mRNA. Furthermore, we discovered that Lym-miR-137 is co-expressed with Lym-CREB2 mRNA in an identified neuron with an established role in LTM. Finally, using an in vivo loss-of-function approach we demonstrated that Lym-miR-137 is required for single-trial induced LTM.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Aprendizaje , Lymnaea/fisiología , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Regulación hacia Abajo , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , ARN Mensajero/genética , Proteínas Represoras/genética , Transcripción Genética , Regulación hacia Arriba
6.
J Neurosci ; 25(5): 1188-92, 2005 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-15689555

RESUMEN

In a number of neuronal models of learning, signaling by the neurotransmitter nitric oxide (NO), synthesized by the enzyme neuronal NO synthase (nNOS), is essential for the formation of long-term memory (LTM). Using the molluscan model system Lymnaea, we investigate here whether LTM formation is associated with specific changes in the activity of members of the NOS gene family: Lym-nNOS1, Lym-nNOS2, and the antisense RNA-producing pseudogene (anti-NOS). We show that expression of the Lym-nNOS1 gene is transiently upregulated in cerebral ganglia after conditioning. The activation of the gene is precisely timed and occurs at the end of a critical period during which NO is required for memory consolidation. Moreover, we demonstrate that this induction of the Lym-nNOS1 gene is targeted to an identified modulatory neuron called the cerebral giant cell (CGC). This neuron gates the conditioned feeding response and is an essential part of the neural network involved in LTM formation. We also show that the expression of the anti-NOS gene, which functions as a negative regulator of nNOS expression, is downregulated in the CGC by training at 4 h after conditioning, during the critical period of NO requirement. This appears to be the first report of the timed and targeted differential regulation of the activity of a group of related genes involved in the production of a neurotransmitter that is necessary for learning, measured in an identified neuron of known function. We also provide the first example of the behavioral regulation of a pseudogene.


Asunto(s)
Condicionamiento Clásico/fisiología , Ganglios de Invertebrados/fisiología , Regulación de la Expresión Génica , Lymnaea/fisiología , Memoria/fisiología , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Óxido Nítrico Sintasa/genética , Óxido Nítrico/fisiología , Seudogenes/genética , ARN sin Sentido/genética , Recompensa , Animales , Aprendizaje por Asociación/fisiología , Conducta Alimentaria/fisiología , Ganglios de Invertebrados/enzimología , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/enzimología , Óxido Nítrico Sintasa/biosíntesis , Óxido Nítrico Sintasa de Tipo I , Pentanoles/farmacología , ARN sin Sentido/biosíntesis , Distribución Aleatoria , Sacarosa/farmacología , Factores de Tiempo
7.
J Neurosci ; 22(11): RC227, 2002 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12040086

RESUMEN

We have used double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) to disrupt neuronal nitric oxide (NO) synthase (nNOS) gene function in the snail Lymnaea stagnalis and have detected a specific behavioral phenotype. The injection of whole animals with synthetic dsRNA molecules targeted to the nNOS-encoding mRNA reduces feeding behavior in vivo and fictive feeding in vitro and interferes with NO synthesis by the CNS. By showing that synthetic dsRNA targeted to the nNOS mRNA causes a significant and long-lasting reduction in the levels of Lym-nNOS mRNA, we verify that specific RNAi has occurred. Importantly, our results establish that the expression of nNOS gene is essential for normal feeding behavior. They also show that dsRNA can be used in the investigation of functional gene expression in the context of whole animal behavior, regardless of the availability of targeted mutation technologies.


Asunto(s)
Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Silenciador del Gen/efectos de los fármacos , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico/fisiología , ARN Bicatenario/farmacología , Animales , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/fisiología , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Expresión Génica/efectos de los fármacos , Silenciador del Gen/fisiología , Marcación de Gen/métodos , Técnicas In Vitro , Lymnaea , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo I , Fenotipo , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Sci Rep ; 5: 11815, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26154151

RESUMEN

Long non-coding natural antisense transcripts (NATs) are widespread in eukaryotic species. Although recent studies indicate that long NATs are engaged in the regulation of gene expression, the precise functional roles of the vast majority of them are unknown. Here we report that a long NAT (Mm-antiNos1 RNA) complementary to mRNA encoding the neuronal isoform of nitric oxide synthase (Nos1) is expressed in the mouse brain and is transcribed from the non-template strand of the Nos1 locus. Nos1 produces nitric oxide (NO), a major signaling molecule in the CNS implicated in many important functions including neuronal differentiation and memory formation. We show that the newly discovered NAT negatively regulates Nos1 gene expression. Moreover, our quantitative studies of the temporal expression profiles of Mm-antiNos1 RNA in the mouse brain during embryonic development and postnatal life indicate that it may be involved in the regulation of NO-dependent neurogenesis.


Asunto(s)
Regulación de la Expresión Génica , Óxido Nítrico Sintasa de Tipo I/genética , ARN sin Sentido/genética , ARN Largo no Codificante/genética , Animales , Secuencia de Bases , Encéfalo/metabolismo , Diferenciación Celular/genética , Línea Celular , Regulación hacia Abajo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/metabolismo , Biosíntesis de Proteínas , ARN sin Sentido/química , ARN Largo no Codificante/química , ARN Mensajero/genética
9.
Sci Rep ; 3: 1027, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23293742

RESUMEN

Natural antisense transcripts (NATs) are endogenous RNA molecules that are complementary to known RNA transcripts. The functional significance of NATs is poorly understood, but their prevalence in the CNS suggests a role in brain function. Here we investigated a long NAT (antiNOS-2 RNA) associated with the regulation of nitric oxide (NO) production in the CNS of Lymnaea, an established model for molecular analysis of learning and memory. We show the antiNOS-2 RNA is axonally trafficked and demonstrate that this is regulated by classical conditioning. Critically, a single conditioning trial changes the amount of antiNOS-2 RNA transported along the axon. This occurs within the critical time window when neurotransmitter NO is required for memory formation. Our data suggest a role for the antiNOS-2 RNA in establishing memories through the regulation of NO signaling at the synapse.


Asunto(s)
Axones/metabolismo , Condicionamiento Clásico/fisiología , Seudogenes/genética , ARN sin Sentido/metabolismo , Animales , Secuencia de Bases , Transporte Biológico , Sistema Nervioso Central/metabolismo , Hibridación in Situ , Lymnaea/metabolismo , Datos de Secuencia Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo
10.
Psychopharmacology (Berl) ; 203(4): 693-702, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19052729

RESUMEN

RATIONALE: Atypical antipsychotic-induced weight gain is a significant impediment in the treatment of schizophrenia. OBJECTIVES: In a putative model of antipsychotic drug-induced weight gain, we investigated the effects of sub-chronic olanzapine on body weight, meal patterns, the expression of genes encoding for hypothalamic feeding-related neuropeptides and the contribution of hyperphagia to olanzapine-induced weight gain in rats. MATERIALS AND METHODS: In experiment 1, female rats received either olanzapine (1 mg/kg, p.o.) or vehicle, twice daily for 7 days, while meal patterns were recorded. At the end of the treatment regimen, we measured the levels of hypothalamic messenger RNAs (mRNAs) encoding neuropeptide-Y (NPY), hypocretin/orexin (HCRT), melanin concentrating hormone and pro-opiomelanocortin. NPY and HCRT mRNA levels were also assessed in a separate cohort of female rats treated acutely with olanzapine (1 mg/kg, p.o.). In experiment 2, we investigated the effect of a pair-feeding paradigm on sub-chronic (1 mg/kg, p.o.) olanzapine-induced weight gain. RESULTS: In experiment 1, sub-chronic olanzapine increased body weight, food intake and meal size. Hypothalamic neuropeptide mRNA levels were unchanged after both acute and sub-chronic olanzapine treatment. In experiment 2, the restriction of food intake to the level of vehicle-treated controls abolished the sub-chronic olanzapine-induced increase in body weight. CONCLUSIONS: Hyperphagia mediated by drug-induced impairments in satiety (as evidenced by increased meal size) is a key requirement for olanzapine-induced weight gain in this paradigm. However, olanzapine-induced hyperphagia and weight gain may not be mediated via alterations in the expression of the feeding-related hypothalamic neuropeptides examined in this study.


Asunto(s)
Antipsicóticos/efectos adversos , Benzodiazepinas/efectos adversos , Ingestión de Alimentos/psicología , Hiperfagia/inducido químicamente , Aumento de Peso/efectos de los fármacos , Animales , Antipsicóticos/administración & dosificación , Benzodiazepinas/administración & dosificación , Ingestión de Alimentos/fisiología , Femenino , Péptidos y Proteínas de Señalización Intracelular/fisiología , Neuropéptido Y/biosíntesis , Neuropéptidos/fisiología , Olanzapina , Orexinas , Proopiomelanocortina/biosíntesis , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA