RESUMEN
Despite the accepted health benefits of consuming dietary fiber, little is known about the mechanisms by which fiber deprivation impacts the gut microbiota and alters disease risk. Using a gnotobiotic mouse model, in which animals were colonized with a synthetic human gut microbiota composed of fully sequenced commensal bacteria, we elucidated the functional interactions between dietary fiber, the gut microbiota, and the colonic mucus barrier, which serves as a primary defense against enteric pathogens. We show that during chronic or intermittent dietary fiber deficiency, the gut microbiota resorts to host-secreted mucus glycoproteins as a nutrient source, leading to erosion of the colonic mucus barrier. Dietary fiber deprivation, together with a fiber-deprived, mucus-eroding microbiota, promotes greater epithelial access and lethal colitis by the mucosal pathogen, Citrobacter rodentium. Our work reveals intricate pathways linking diet, the gut microbiome, and intestinal barrier dysfunction, which could be exploited to improve health using dietary therapeutics.
Asunto(s)
Fibras de la Dieta/administración & dosificación , Microbioma Gastrointestinal , Mucosa Intestinal/microbiología , Animales , Citrobacter rodentium/fisiología , Colitis/microbiología , Colon/microbiología , Susceptibilidad a Enfermedades , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli , Femenino , Vida Libre de Gérmenes , Humanos , Masculino , Ratones , Mucina 2/genéticaRESUMEN
Members of the Bacteroidetes phylum in the human colon deploy an extensive number of proteins to capture and degrade polysaccharides. Operons devoted to glycan breakdown and uptake are termed polysaccharide utilization loci or PUL. The starch utilization system (Sus) is one such PUL and was initially described in Bacteroides thetaiotaomicron (Bt). BtSus is highly conserved across many species, except for its extracellular α-amylase, SusG. In this work, we show that the Bacteroides ovatus (Bo) extracellular α-amylase, BoGH13ASus, is distinguished from SusG in its evolutionary origin and its domain architecture and by being the most prevalent form in Bacteroidetes Sus. BoGH13ASus is the founding member of both a novel subfamily in the glycoside hydrolase family 13, GH13_47, and a novel carbohydrate-binding module, CBM98. The BoGH13ASus CBM98-CBM48-GH13_47 architecture differs from the CBM58 embedded within the GH13_36 of SusG. These domains adopt a distinct spatial orientation and invoke a different association with the outer membrane. The BoCBM98 binding site is required for Bo growth on polysaccharides and optimal enzymatic degradation thereof. Finally, the BoGH13ASus structure features bound Ca2+ and Mn2+ ions, the latter of which is novel for an α-amylase. Little is known about the impact of Mn2+ on gut bacterial function, much less on polysaccharide consumption, but Mn2+ addition to Bt expressing BoGH13ASus specifically enhances growth on starch. Further understanding of bacterial starch degradation signatures will enable more tailored prebiotic and pharmaceutical approaches that increase starch flux to the gut.
Asunto(s)
Bacteroides , alfa-Amilasas , Humanos , Bacteroides/metabolismo , Almidón/metabolismo , Polisacáridos/metabolismoRESUMEN
IMPORTANCE: The human gut microbiota, including Bacteroides, is required for the degradation of otherwise undigestible polysaccharides. The gut microbiota uses polysaccharides as an energy source, and fermentation products such as short-chain fatty acids are beneficial to the human host. This use of polysaccharides is dependent on the proper pairing of a TonB protein with polysaccharide-specific TonB-dependent transporters; however, the formation of these protein complexes is poorly understood. In this study, we examine the role of 11 predicted TonB homologs in polysaccharide uptake. We show that two proteins, TonB4 and TonB6, may be functionally redundant. This may allow for the development of drugs targeting Bacteroides species containing only a TonB4 homolog with limited impact on species encoding the redundant TonB6.
Asunto(s)
Bacteroides thetaiotaomicron , Humanos , Bacteroides thetaiotaomicron/metabolismo , Polisacáridos/metabolismo , Bacteroides/genéticaRESUMEN
Ruminococcus bromii is a keystone species in the human gut that has the rare ability to degrade dietary resistant starch (RS). This bacterium secretes a suite of starch-active proteins that work together within larger complexes called amylosomes that allow R. bromii to bind and degrade RS. Starch adherence system protein 20 (Sas20) is one of the more abundant proteins assembled within amylosomes, but little could be predicted about its molecular features based on amino acid sequence. Here, we performed a structure-function analysis of Sas20 and determined that it features two discrete starch-binding domains separated by a flexible linker. We show that Sas20 domain 1 contains an N-terminal ß-sandwich followed by a cluster of α-helices, and the nonreducing end of maltooligosaccharides can be captured between these structural features. Furthermore, the crystal structure of a close homolog of Sas20 domain 2 revealed a unique bilobed starch-binding groove that targets the helical α1,4-linked glycan chains found in amorphous regions of amylopectin and crystalline regions of amylose. Affinity PAGE and isothermal titration calorimetry demonstrated that both domains bind maltoheptaose and soluble starch with relatively high affinity (Kd ≤ 20 µM) but exhibit limited or no binding to cyclodextrins. Finally, small-angle X-ray scattering analysis of the individual and combined domains support that these structures are highly flexible, which may allow the protein to adopt conformations that enhance its starch-targeting efficiency. Taken together, we conclude that Sas20 binds distinct features within the starch granule, facilitating the ability of R. bromii to hydrolyze dietary RS.
Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras , Ruminococcus , Amilopectina/metabolismo , Amilosa/metabolismo , Proteínas Portadoras/metabolismo , Carbohidratos de la Dieta , Humanos , Almidón/metabolismoRESUMEN
The gut microbiota comprises hundreds of species with a composition shaped by the available glycans. The well-studied starch utilization system (Sus) is a prototype for glycan uptake in the human gut bacterium Bacteroides thetaiotaomicron (Bt). Each Sus-like system includes outer-membrane proteins, which translocate glycan into the periplasm, and one or more cell-surface glycoside hydrolases, which break down a specific (cognate) polymer substrate. Although the molecular mechanisms of the Sus system are known, how the Sus and Sus-like proteins cooperate remains elusive. Previously, we used single-molecule and super-resolution fluorescence microscopy to show that SusG is mobile on the outer membrane and slows down in the presence of starch. Here, we compare the dynamics of three glycoside hydrolases: SusG, Bt4668, and Bt1760, which target starch, galactan, and levan, respectively. We characterized the diffusion of each surface hydrolase in the presence of its cognate glycan and found that all three enzymes are mostly immobile in the presence of the polysaccharide, consistent with carbohydrate binding. Moreover, experiments in glucose versus oligosaccharides suggest that the enzyme dynamics depend on their expression level. Furthermore, we characterized enzyme diffusion in a mixture of glycans and found that noncognate polysaccharides modify the dynamics of SusG and Bt1760 but not Bt4668. We investigated these systems with polysaccharide mixtures and genetic knockouts and found that noncognate polysaccharides modify hydrolase dynamics through some combination of nonspecific protein interactions and downregulation of the hydrolase. Overall, these experiments extend our understanding of how Sus-like lipoprotein dynamics can be modified by changing carbohydrate conditions and the expression level of the enzyme.
Asunto(s)
Bacteroides , Lipoproteínas , Humanos , Polisacáridos , Almidón , Hidrolasas , CarbohidratosRESUMEN
The human gut microbiota endows the host with a wealth of metabolic functions central to health, one of which is the degradation and fermentation of complex carbohydrates. The Bacteroidetes are one of the dominant bacterial phyla of this community and possess an expanded capacity for glycan utilization. This is mediated via the coordinated expression of discrete polysaccharide utilization loci (PUL) that invariantly encode a TonB-dependent transporter (SusC) that works with a glycan-capturing lipoprotein (SusD). More broadly within Gram-negative bacteria, TonB-dependent transporters (TBDTs) are deployed for the uptake of not only sugars, but also more often for essential nutrients such as iron and vitamins. Here, we provide a comprehensive look at the repertoire of TBDTs found in the model gut symbiont Bacteroides thetaiotaomicron and the range of predicted functional domains associated with these transporters and SusD proteins for the uptake of both glycans and other nutrients. This atlas of the B. thetaiotaomicron TBDTs reveals that there are at least three distinct subtypes of these transporters encoded within its genome that are presumably regulated in different ways to tune nutrient uptake.
Asunto(s)
Proteínas Bacterianas/fisiología , Bacteroides thetaiotaomicron/fisiología , Lipoproteínas/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Proteínas Bacterianas/química , Bacteroides thetaiotaomicron/química , Microbioma Gastrointestinal , Humanos , Hierro/metabolismo , Lipoproteínas/química , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/química , Conformación Proteica , Dominios Proteicos , Azúcares/metabolismo , Vitaminas/metabolismoRESUMEN
Complex carbohydrates shape the gut microbiota, and the collective fermentation of resistant starch by gut microbes positively affects human health through enhanced butyrate production. The keystone species Ruminococcus bromii (Rb) is a specialist in degrading resistant starch; its degradation products are used by other bacteria including Bacteroides thetaiotaomicron (Bt). We analysed the metabolic and spatial relationships between Rb and Bt during potato starch degradation and found that Bt utilizes glucose that is released from Rb upon degradation of resistant potato starch and soluble potato amylopectin. Additionally, we found that Rb produces a halo of glucose around it when grown on solid media containing potato amylopectin and that Bt cells deficient for growth on potato amylopectin (∆sus Bt) can grow within the halo. Furthermore, when these ∆sus Bt cells grow within this glucose halo, they have an elongated cell morphology. This long-cell phenotype depends on the glucose concentration in the solid media: longer Bt cells are formed at higher glucose concentrations. Together, our results indicate that starch degradation by Rb cross-feeds other bacteria in the surrounding region by releasing glucose. Our results also elucidate the adaptive morphology of Bt cells under different nutrient and physiological conditions.
Asunto(s)
Bacteroides thetaiotaomicron , Amilopectina , Bacterias/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Glucosa , Almidón Resistente , Ruminococcus , Almidón/metabolismoRESUMEN
The hyperthermophilic bacterium Caldicellulosiruptor kristjansonii encodes an unusual enzyme, CkXyn10C-GE15A, which incorporates two catalytic domains, a xylanase and a glucuronoyl esterase, and five carbohydrate-binding modules (CBMs) from families 9 and 22. The xylanase and glucuronoyl esterase catalytic domains were recently biochemically characterized, as was the ability of the individual CBMs to bind insoluble polysaccharides. Here, we further probed the abilities of the different CBMs from CkXyn10C-GE15A to bind to soluble poly- and oligosaccharides using affinity gel electrophoresis, isothermal titration calorimetry, and differential scanning fluorimetry. The results revealed additional binding properties of the proteins compared to the former studies on insoluble polysaccharides. Collectively, the results show that all five CBMs have their own distinct binding preferences and appear to complement each other and the catalytic domains in targeting complex cell wall polysaccharides. Additionally, through renewed efforts, we have achieved partial structural characterization of this complex multidomain protein. We have determined the structures of the third CBM9 domain (CBM9.3) and the glucuronoyl esterase (GE15A) by X-ray crystallography. CBM9.3 is the second CBM9 structure determined to date and was shown to bind oligosaccharide ligands at the same site but in a different binding mode compared to that of the previously determined CBM9 structure from Thermotoga maritima. GE15A represents a unique intermediate between reported fungal and bacterial glucuronoyl esterase structures as it lacks two inserted loop regions typical of bacterial enzymes and a third loop has an atypical structure. We also report small-angle X-ray scattering measurements of the N-terminal CBM22.1-CBM22.2-Xyn10C construct, indicating a compact arrangement at room temperature.
Asunto(s)
Proteínas Bacterianas/química , Caldicellulosiruptor/enzimología , Esterasas/química , Xilosidasas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Caldicellulosiruptor/química , Caldicellulosiruptor/metabolismo , Cristalografía por Rayos X , Estabilidad de Enzimas , Esterasas/metabolismo , Modelos Moleculares , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Conformación Proteica , Temperatura , Xilosidasas/metabolismoRESUMEN
Pullulanases are glycoside hydrolase family 13 (GH13) enzymes that target α1,6 glucosidic linkages within starch and aid in the degradation of the α1,4- and α1,6- linked glucans pullulan, glycogen and amylopectin. The human gut bacterium Ruminococcus bromii synthesizes two extracellular pullulanases, Amy10 and Amy12, that are incorporated into the multiprotein amylosome complex that enables the digestion of granular resistant starch from the diet. Here we provide a comparative biochemical analysis of these pullulanases and the x-ray crystal structures of the wild type and the nucleophile mutant D392A of Amy12 complexed with maltoheptaose and 63-α-D glucosyl-maltotriose. While Amy10 displays higher catalytic efficiency on pullulan and cleaves only α1,6 linkages, Amy12 has some activity on α1,4 linkages suggesting that these enzymes are not redundant within the amylosome. Our structures of Amy12 include a mucin-binding protein (MucBP) domain that follows the C-domain of the GH13 fold, an atypical feature of these enzymes. The wild type Amy12 structure with maltoheptaose captured two oligosaccharides in the active site arranged as expected following catalysis of an α1,6 branch point in amylopectin. The nucleophile mutant D392A complexed with maltoheptaose or 63-α-D glucosyl-maltotriose captured ß-glucose at the reducing end in the -1 subsite, facilitated by the truncation of the active site aspartate and stabilized by stacking with Y279. The core interface between the co-crystallized ligands and Amy12 occurs within the -2 through + 1 subsites, which may allow for flexible recognition of α1,6 linkages within a variety of starch structures.
Asunto(s)
Glicósido Hidrolasas , Ruminococcus , Glicósido Hidrolasas/química , Humanos , Ruminococcus/genética , Ruminococcus/metabolismo , Almidón/metabolismo , Especificidad por SustratoRESUMEN
The Bacteroidetes are numerically abundant Gram-negative organisms of the distal human gut with a greatly expanded capacity to degrade complex glycans. A subset of these are adept at scavenging host glycans within this environment, including mucin O-linked glycans, N-linked glycoproteins and highly sulfated glycosaminoglycans (GAGs) such as heparin (Hep) and chondroitin sulfate (CS). Several recent biochemical studies have revealed the specific polysaccharide utilization loci (PULs) within the model symbiont Bacteroides thetaiotaomicron for the deconstruction of these host glycans. Here we discuss the Sus-like paradigm that defines glycan uptake by the Bacteroidetes and the salient details of the PULs that target heparin/heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (DS)/hyaluronic acid (HA), respectively, in B. thetaiotaomicron. The ability of the Bacteroidetes to target highly sulfated host glycans is key to their success in the gut environment but can lead to inflammation in susceptible hosts. Therefore, our continued understanding of the molecular strategies employed by these bacteria to scavenge carbohydrate nutrition is likely to lead to novel ways to alter their metabolism to promote host health.
Asunto(s)
Bacteroides thetaiotaomicron , Bacteroides , Bacteroides/metabolismo , Bacteroidetes , Glicosaminoglicanos/química , Heparitina Sulfato/metabolismo , Humanos , Polisacáridos/metabolismoRESUMEN
Anaerobic bacteria inhabiting the human gastrointestinal tract have evolved various enzymes that modify host-derived steroids. The bacterial steroid-17,20-desmolase pathway cleaves the cortisol side chain, forming pro-androgens predicted to impact host physiology. Bacterial 20ß-hydroxysteroid dehydrogenase (20ß-HSDH) regulates cortisol side-chain cleavage by reducing the C-20 carboxyl group on cortisol, yielding 20ß-dihydrocortisol. Recently, the gene encoding 20ß-HSDH in Butyricicoccus desmolans ATCC 43058 was reported, and a nonredundant protein search yielded a candidate 20ß-HSDH gene in Bifidobacterium adolescentis strain L2-32. B. adolescentis 20ß-HSDH could regulate cortisol side-chain cleavage by limiting pro-androgen formation in bacteria such as Clostridium scindens and 21-dehydroxylation by Eggerthella lenta Here, the putative B. adolescentis 20ß-HSDH was cloned, overexpressed, and purified. 20ß-HSDH activity was confirmed through whole-cell and pure enzymatic assays, and it is specific for cortisol. Next, we solved the structures of recombinant 20ß-HSDH in both the apo- and holo-forms at 2.0-2.2 Å resolutions, revealing close overlap except for rearrangements near the active site. Interestingly, the structures contain a large, flexible N-terminal region that was investigated by gel-filtration chromatography and CD spectroscopy. This extended N terminus is important for protein stability because deletions of varying lengths caused structural changes and reduced enzymatic activity. A nonconserved extended N terminus was also observed in several short-chain dehydrogenase/reductase family members. B. adolescentis strains capable of 20ß-HSDH activity could alter glucocorticoid metabolism in the gut and thereby serve as potential probiotics for the management of androgen-dependent diseases.
Asunto(s)
Proteínas Bacterianas/metabolismo , Bifidobacterium adolescentis/enzimología , Hidroxiesteroide Deshidrogenasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Hidrocortisona/química , Hidrocortisona/metabolismo , Hidroxiesteroide Deshidrogenasas/química , Hidroxiesteroide Deshidrogenasas/genética , Cinética , Mutagénesis Sitio-Dirigida , NAD/química , NAD/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Especificidad por SustratoRESUMEN
Unique morphologies can enable bacteria to survive in their native environment. Furthermore, many bacteria change their cell shape to adapt to different environmental conditions. For instance, some bacteria increase their surface area under carbon or nitrogen starvation. Bacteriodes thetaiotaomicron is an abundant human gut species; it efficiently degrades a number of carbohydrates and also supports the growth of other bacteria by breaking down complex polysaccharides. The gut provides a variable environment as nutrient availability is subject to the diet and health of the host, yet how gut bacteria adapt and change their morphologies under different nutrient conditions has not been studied. Here, for the first time, we report an elongated B. thetaiotaomicron morphology under sugar-limited conditions using live-cell imaging; this elongated morphology is enhanced in the presence of sodium bicarbonate. Similarly, we also observed that sodium bicarbonate produces an elongated-length phenotype in another Gram-negative gut bacterium, Escherichia coli. The increase in cell length might provide an adaptive advantage for cells to survive under nutrient-limited conditions.
Asunto(s)
Bacteroides thetaiotaomicron/crecimiento & desarrollo , Escherichia coli/crecimiento & desarrollo , Estrés Fisiológico , Azúcares/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Escherichia coli/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Morfogénesis , Fenotipo , Bicarbonato de Sodio/metabolismoRESUMEN
Intracellular pathogens must egress from the host cell to continue their infectious cycle. Apicomplexans are a phylum of intracellular protozoans that have evolved members of the membrane attack complex and perforin (MACPF) family of pore forming proteins to disrupt cellular membranes for traversing cells during tissue migration or egress from a replicative vacuole following intracellular reproduction. Previous work showed that the apicomplexan Toxoplasma gondii secretes a perforin-like protein (TgPLP1) that contains a C-terminal Domain (CTD) which is necessary for efficient parasite egress. However, the structural basis for CTD membrane binding and egress competency remained unknown. Here, we present evidence that TgPLP1 CTD prefers binding lipids that are abundant in the inner leaflet of the lipid bilayer. Additionally, solving the high-resolution crystal structure of the TgPLP1 APCß domain within the CTD reveals an unusual double-layered ß-prism fold that resembles only one other protein of known structure. Three direct repeat sequences comprise subdomains, with each constituting a wall of the ß-prism fold. One subdomain features a protruding hydrophobic loop with an exposed tryptophan at its tip. Spectrophotometric measurements of intrinsic tryptophan fluorescence are consistent with insertion of the hydrophobic loop into a target membrane. Using CRISPR/Cas9 gene editing we show that parasite strains bearing mutations in the hydrophobic loop, including alanine substitution of the tip tryptophan, are equally deficient in egress as a strain lacking TgPLP1 altogether. Taken together our findings suggest a crucial role for the hydrophobic loop in anchoring TgPLP1 to the membrane to support its cytolytic activity and egress function.
Asunto(s)
Perforina/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/patogenicidad , Toxoplasmosis/metabolismo , Membrana Celular/metabolismo , Humanos , Perforina/química , Conformación Proteica , Proteínas Protozoarias/química , Toxoplasma/químicaRESUMEN
A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.
Asunto(s)
Bacteroides/genética , Bacteroides/metabolismo , Tracto Gastrointestinal/microbiología , Sitios Genéticos/genética , Glucanos/metabolismo , Xilanos/metabolismo , Secuencia de Aminoácidos , Bacteroides/enzimología , Bacteroides/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono/genética , Secuencia de Carbohidratos , Pared Celular/química , Cristalografía por Rayos X , Dieta , Fibras de la Dieta , Evolución Molecular , Glucanos/química , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Humanos , Metagenoma , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Simbiosis , Xilanos/químicaRESUMEN
The human gut microbiota, which underpins nutrition and systemic health, is compositionally sensitive to the availability of complex carbohydrates in the diet. The Bacteroidetes comprise a dominant phylum in the human gut microbiota whose members thrive on dietary and endogenous glycans by employing a diversity of highly specific, multi-gene polysaccharide utilization loci (PUL), which encode a variety of carbohydrases, transporters, and sensor/regulators. PULs invariably also encode surface glycan-binding proteins (SGBPs) that play a central role in saccharide capture at the outer membrane. Here, we present combined biophysical, structural, and in vivo characterization of the two SGBPs encoded by the Bacteroides ovatus mixed-linkage ß-glucan utilization locus (MLGUL), thereby elucidating their key roles in the metabolism of this ubiquitous dietary cereal polysaccharide. In particular, molecular insight gained through several crystallographic complexes of SGBP-A and SGBP-B with oligosaccharides reveals that unique shape complementarity of binding platforms underpins specificity for the kinked MLG backbone vis-à-vis linear ß-glucans. Reverse-genetic analysis revealed that both the presence and binding ability of the SusD homolog BoSGBPMLG-A are essential for growth on MLG, whereas the divergent, multi-domain BoSGBPMLG-B is dispensable but may assist in oligosaccharide scavenging from the environment. The synthesis of these data illuminates the critical role SGBPs play in concert with other MLGUL components, reveals new structure-function relationships among SGBPs, and provides fundamental knowledge to inform future (meta)genomic, biochemical, and microbiological analyses of the human gut microbiota.
Asunto(s)
Bacteroides/fisiología , Grano Comestible/metabolismo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Proteínas de la Membrana/fisiología , Polisacáridos/metabolismo , beta-Glucanos/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Metabolismo de los Hidratos de Carbono/fisiología , Secuencia de Carbohidratos , Fibras de la Dieta/metabolismo , Microbioma Gastrointestinal/fisiología , Regulación Bacteriana de la Expresión Génica , Sitios Genéticos , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Humanos , Proteínas de la Membrana/metabolismoRESUMEN
The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model system for nutrient acquisition by gut Bacteroidetes, a dominant phylum of gut bacteria. The Sus includes SusCDEFG, which assemble on the cell surface to capture, degrade and import starch. While SusD is an essential starch-binding protein, the precise role(s) of the partially homologous starch-binding proteins SusE and SusF has remained elusive. We previously reported that a non-binding version of SusD (SusD*) supports growth on starch when other members of the multi-protein complex are present. Here we demonstrate that SusE supports SusD* growth on maltooligosaccharides, and determine the domains of SusE essential for this function. Furthermore, we demonstrate that SusE does not need to bind starch to support growth in the presence of SusD*, suggesting that the assembly of SusCDE is most important for maltooligosaccharide uptake in this context. However, starch binding by proteins SusDEF directs the uptake of maltooligosaccharides of specific lengths, suggesting that these proteins equip the cell to scavenge a range of starch fragments. These data demonstrate that the assembly of core Sus proteins SusCDE is secondary to their glycan binding roles, but glycan binding by Sus proteins may fine tune the selection of glycans from the environment.
Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacteroides thetaiotaomicron/fisiología , Almidón/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Bacteroides thetaiotaomicron/genética , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMEN
Gut bacteria recognize accessible glycan substrates within a complex environment. Carbohydrate binding modules (CBMs) of cell surface glycoside hydrolases often drive binding to the target substrate. Eubacterium rectale, an important butyrate-producing organism in the gut, consumes a limited range of substrates, including starch. Host consumption of resistant starch increases the abundance of E. rectale in the intestine, likely because it successfully captures the products of resistant starch degradation by other bacteria. Here, we demonstrate that the cell wall anchored starch-degrading α-amylase, Amy13K of E. rectale harbors five CBMs that all target starch with differing specificities. Intriguingly these CBMs efficiently bind to both regular and high amylose corn starch (a type of resistant starch), but have almost no affinity for potato starch (another type of resistant starch). Removal of these CBMs from Amy13K reduces the activity level of the enzyme toward corn starches by â¼40-fold, down to the level of activity toward potato starch, suggesting that the CBMs facilitate activity on corn starch and allow its utilization in vivo. The specificity of the Amy13K CBMs provides a molecular rationale for why E. rectale is able to only use certain starch types without the aid of other organisms.
Asunto(s)
Pared Celular/enzimología , Eubacterium/enzimología , Intestinos/microbiología , Almidón/metabolismo , alfa-Amilasas/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Eubacterium/genética , Interacciones Microbiota-Huesped/genética , Humanos , Conformación Molecular , Mutación , Solanum tuberosum/microbiología , Zea mays/microbiología , alfa-Amilasas/genéticaRESUMEN
Bacteroides thetaiotaomicron (Bt) is a prominent member of the human gut microbiota with an extensive capacity for glycan harvest. This bacterium expresses a five-protein complex in the outer membrane, called the starch utilization system (Sus), which binds, degrades, and imports starch into the cell. Sus is a model system for the many glycan-targeting polysaccharide utilization loci found in Bt and other members of the Bacteroidetes phylum. Our previous work has shown that SusG, a lipidated amylase in the outer membrane, explores the entire cell surface but diffuses more slowly as it interacts with starch. Here, we use a combination of single-molecule tracking, super-resolution imaging, reverse genetics, and proteomics to show that SusE and SusF, two proteins that bind starch, are immobile on the cell surface even when other members of the system are knocked out and under multiple different growth conditions. This observation suggests a new paradigm for protein complex formation: binding proteins form immobile complexes that transiently associate with a mobile enzyme partner.
Asunto(s)
Proteínas Bacterianas/metabolismo , Almidón/metabolismo , Bacteroidaceae/citología , Bacteroidaceae/metabolismo , Membrana Celular/metabolismo , Unión ProteicaRESUMEN
A recently identified polysaccharide utilization locus (PUL) from Bacteroides ovatus ATCC 8483 is transcriptionally up-regulated during growth on galacto- and glucomannans. It encodes two glycoside hydrolase family 26 (GH26) ß-mannanases, BoMan26A and BoMan26B, and a GH36 α-galactosidase, BoGal36A. The PUL also includes two glycan-binding proteins, confirmed by ß-mannan affinity electrophoresis. When this PUL was deleted, B. ovatus was no longer able to grow on locust bean galactomannan. BoMan26A primarily formed mannobiose from mannan polysaccharides. BoMan26B had higher activity on galactomannan with a high degree of galactosyl substitution and was shown to be endo-acting generating a more diverse mixture of oligosaccharides, including mannobiose. Of the two ß-mannanases, only BoMan26B hydrolyzed galactoglucomannan. A crystal structure of BoMan26A revealed a similar structure to the exo-mannobiohydrolase CjMan26C from Cellvibrio japonicus, with a conserved glycone region (-1 and -2 subsites), including a conserved loop closing the active site beyond subsite -2. Analysis of cellular location by immunolabeling and fluorescence microscopy suggests that BoMan26B is surface-exposed and associated with the outer membrane, although BoMan26A and BoGal36A are likely periplasmic. In light of the cellular location and the biochemical properties of the two characterized ß-mannanases, we propose a scheme of sequential action by the glycoside hydrolases encoded by the ß-mannan PUL and involved in the ß-mannan utilization pathway in B. ovatus. The outer membrane-associated BoMan26B initially acts on the polysaccharide galactomannan, producing comparably large oligosaccharide fragments. Galactomanno-oligosaccharides are further processed in the periplasm, degalactosylated by BoGal36A, and subsequently hydrolyzed into mainly mannobiose by the ß-mannanase BoMan26A.
Asunto(s)
Bacteroides/enzimología , Mananos/metabolismo , Polisacáridos/metabolismo , beta-Manosidasa/química , beta-Manosidasa/metabolismo , Catálisis , Cristalografía por Rayos X , Galactosa/análogos & derivados , Hidrólisis , Conformación Proteica , Especificidad por SustratoRESUMEN
Resident bacteria in the densely populated human intestinal tract must efficiently compete for carbohydrate nutrition. The Bacteroidetes, a dominant bacterial phylum in the mammalian gut, encode a plethora of discrete polysaccharide utilization loci (PULs) that are selectively activated to facilitate glycan capture at the cell surface. The most well-studied PUL-encoded glycan-uptake system is the starch utilization system (Sus) of Bacteroides thetaiotaomicron. The Sus includes the requisite proteins for binding and degrading starch at the surface of the cell preceding oligosaccharide transport across the outer membrane for further depolymerization to glucose in the periplasm. All mammalian gut Bacteroidetes possess analogous Sus-like systems that target numerous diverse glycans. In this review, we discuss what is known about the eight Sus proteins of B. thetaiotaomicron that define the Sus-like paradigm of nutrient acquisition that is exclusive to the Gram-negative Bacteroidetes. We emphasize the well-characterized outer membrane proteins SusDEF and the α-amylase SusG, each of which have unique structural features that allow them to interact with starch on the cell surface. Despite the apparent redundancy in starch-binding sites among these proteins, each has a distinct role during starch catabolism. Additionally, we consider what is known about how these proteins dynamically interact and cooperate in the membrane and propose a model for the formation of the Sus outer membrane complex.