Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 155(4): 869-80, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209624

RESUMEN

Variability in gene expression contributes to phenotypic heterogeneity even in isogenic populations. Here, we used the stereotyped, Wnt signaling-dependent development of the Caenorhabditis elegans Q neuroblast to probe endogenous mechanisms that control gene expression variability. We found that the key Hox gene that orients Q neuroblast migration exhibits increased gene expression variability in mutants in which Wnt pathway activity has been perturbed. Distinct features of the gene expression distributions prompted us on a systematic search for regulatory interactions, revealing a network of interlocked positive and negative feedback loops. Interestingly, positive feedback appeared to cooperate with negative feedback to reduce variability while keeping the Hox gene expression at elevated levels. A minimal model correctly predicts the increased gene expression variability across mutants. Our results highlight the influence of gene network architecture on expression variability and implicate feedback regulation as an effective mechanism to ensure developmental robustness.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Variación Genética , Vía de Señalización Wnt , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Movimiento Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Retroalimentación Fisiológica , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Redes Reguladoras de Genes , Glicoproteínas/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Proteínas Wnt
2.
PLoS Biol ; 20(5): e3001597, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35609035

RESUMEN

Polyploid cells contain more than 2 copies of the genome and are found in many plant and animal tissues. Different types of polyploidy exist, in which the genome is confined to either 1 nucleus (mononucleation) or 2 or more nuclei (multinucleation). Despite the widespread occurrence of polyploidy, the functional significance of different types of polyploidy is largely unknown. Here, we assess the function of multinucleation in Caenorhabditis elegans intestinal cells through specific inhibition of binucleation without altering genome ploidy. Through single-worm RNA sequencing, we find that binucleation is important for tissue-specific gene expression, most prominently for genes that show a rapid up-regulation at the transition from larval development to adulthood. Regulated genes include vitellogenins, which encode yolk proteins that facilitate nutrient transport to the germline. We find that reduced expression of vitellogenins in mononucleated intestinal cells leads to progeny with developmental delays and reduced fitness. Together, our results show that binucleation facilitates rapid up-regulation of intestine-specific gene expression during development, independently of genome ploidy, underscoring the importance of spatial genome organization for polyploid cell function.


Asunto(s)
Poliploidía , Vitelogeninas , Animales , Caenorhabditis elegans/genética , División Celular , Núcleo Celular/genética , Expresión Génica , Vitelogeninas/genética
3.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33737394

RESUMEN

Members of the Wnt family of secreted glycoproteins regulate cell migration through distinct canonical and noncanonical signaling pathways. Studies of vertebrate development and disease have shown that these pathways can have opposing effects on cell migration, but the mechanism of this functional interplay is not known. In the nematode Caenorhabditis elegans, a switch from noncanonical to canonical Wnt signaling terminates the long-range migration of the QR neuroblast descendants, providing a tractable system to study this mechanism in vivo. Here, we show that noncanonical Wnt signaling acts through PIX-1/RhoGEF, while canonical signaling directly activates the Slt-Robo pathway component EVA-1/EVA1C and the Rho GTPase-activating protein RGA-9b/ARHGAP, which are required for migration inhibition. Our results support a model in which cross-talk between noncanonical and canonical Wnt signaling occurs through antagonistic regulation of the Rho GTPases that drive cell migration.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Movimiento Celular , Proteínas Activadoras de GTPasa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Receptores Inmunológicos/metabolismo , Vía de Señalización Wnt , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Movimiento Celular/genética , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Receptores Inmunológicos/genética , Proteínas Roundabout
4.
Mol Biol Evol ; 38(1): 229-243, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32785688

RESUMEN

Divergence of gene function and expression during development can give rise to phenotypic differences at the level of cells, tissues, organs, and ultimately whole organisms. To gain insights into the evolution of gene expression and novel genes at spatial resolution, we compared the spatially resolved transcriptomes of two distantly related nematodes, Caenorhabditis elegans and Pristionchus pacificus, that diverged 60-90 Ma. The spatial transcriptomes of adult worms show little evidence for strong conservation at the level of single genes. Instead, regional expression is largely driven by recent duplication and emergence of novel genes. Estimation of gene ages across anatomical structures revealed an enrichment of novel genes in sperm-related regions. This provides first evidence in nematodes for the "out of testis" hypothesis that has been previously postulated based on studies in Drosophila and mammals. "Out of testis" genes represent a mix of products of pervasive transcription as well as fast evolving members of ancient gene families. Strikingly, numerous novel genes have known functions during meiosis in Caenorhabditis elegans indicating that even universal processes such as meiosis may be targets of rapid evolution. Our study highlights the importance of novel genes in generating phenotypic diversity and explicitly characterizes gene origination in sperm-related regions. Furthermore, it proposes new functions for previously uncharacterized genes and establishes the spatial transcriptome of Pristionchus pacificus as a catalog for future studies on the evolution of gene expression and function.


Asunto(s)
Caenorhabditis elegans/genética , Evolución Molecular , Familia de Multigenes , Espermatozoides , Transcriptoma , Animales , Caenorhabditis elegans/metabolismo , Duplicación de Gen , Perfilación de la Expresión Génica , Genoma de los Helmintos , Masculino , Meiosis/genética , Filogenia , Espermatogénesis/genética , Testículo/fisiología
5.
Development ; 146(18)2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31488562

RESUMEN

Directional migration of neurons and neuronal precursor cells is a central process in nervous system development. In the nematode Caenorhabditis elegans, the two Q neuroblasts polarize and migrate in opposite directions along the anteroposterior body axis. Several key regulators of Q cell polarization have been identified, including MIG-21, DPY-19/DPY19L1, the netrin receptor UNC-40/DCC, the Fat-like cadherin CDH-4 and CDH-3/Fat, which we describe in this study. How these different transmembrane proteins act together to direct Q neuroblast polarization and migration is still largely unknown. Here, we demonstrate that MIG-21 and DPY-19, CDH-3 and CDH-4, and UNC-40 define three distinct pathways that have partially redundant roles in protrusion formation, but also separate functions in regulating protrusion direction. Moreover, we show that the MIG-21, DPY-19 and Fat-like cadherin pathways control the localization and clustering of UNC-40 at the leading edge of the polarizing Q neuroblast, and that this is independent of the UNC-40 ligands UNC-6/netrin and MADD-4. Our results provide insight into a novel mechanism for ligand-independent localization of UNC-40 that directs the activity of UNC-40 along the anteroposterior axis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular/metabolismo , Polaridad Celular , Neuronas/citología , Neuronas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Movimiento Celular , Centrosoma/metabolismo , Ligandos , Transducción de Señal
6.
Mol Cell ; 49(4): 730-42, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23333309

RESUMEN

Forkhead box O (FOXO; DAF-16 in worms) transcription factors, which are of vital importance in cell-cycle control, stress resistance, tumor suppression, and organismal lifespan, are largely regulated through nucleo-cytoplasmic shuttling. Insulin signaling keeps FOXO/DAF-16 cytoplasmic, and hence transcriptionally inactive. Conversely, as in loss of insulin signaling, reactive oxygen species (ROS) can activate FOXO/DAF-16 through nuclear accumulation. How ROS regulate the nuclear translocation of FOXO/DAF-16 is largely unknown. Cysteine oxidation can stabilize protein-protein interactions through the formation of disulfide-bridges when cells encounter ROS. Using a proteome-wide screen that identifies ROS-induced mixed disulfide-dependent complexes, we discovered several interaction partners of FOXO4, one of which is the nuclear import receptor transportin-1. We show that disulfide formation with transportin-1 is required for nuclear localization and the activation of FOXO4/DAF-16 induced by ROS, but not by the loss of insulin signaling. This molecular mechanism for nuclear shuttling is conserved in C. elegans and directly connects redox signaling to the longevity protein FOXO/DAF-16.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factores de Transcripción/metabolismo , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Caenorhabditis elegans/citología , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Cistina/metabolismo , Factores de Transcripción Forkhead , Células HEK293 , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , beta Carioferinas/fisiología
7.
PLoS Genet ; 14(12): e1007840, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30532125

RESUMEN

Van Gogh-like (Vangl) and Prickle (Pk) are core components of the non-canonical Wnt planar cell polarity pathway that controls epithelial polarity and cell migration. Studies in vertebrate model systems have suggested that Vangl and Pk may also inhibit signaling through the canonical Wnt/ß-catenin pathway, but the functional significance of this potential cross-talk is unclear. In the nematode C. elegans, the Q neuroblasts and their descendants migrate in opposite directions along the anteroposterior body axis. The direction of these migrations is specified by Wnt signaling, with activation of canonical Wnt signaling driving posterior migration, and non-canonical Wnt signaling anterior migration. Here, we show that the Vangl ortholog VANG-1 influences the Wnt signaling response of the Q neuroblasts by negatively regulating canonical Wnt signaling. This inhibitory activity depends on a carboxy-terminal PDZ binding motif in VANG-1 and the Dishevelled ortholog MIG-5, but is independent of the Pk ortholog PRKL-1. Moreover, using Vangl1 and Vangl2 double mutant cells, we show that a similar mechanism acts in mammalian cells. We conclude that cross-talk between VANG-1/Vangl and the canonical Wnt pathway is an evolutionarily conserved mechanism that ensures robust specification of Wnt signaling responses.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Fosfoproteínas/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Linaje de la Célula , Polaridad Celular/genética , Polaridad Celular/fisiología , Proteínas Dishevelled/genética , Proteínas Dishevelled/metabolismo , Genes de Helminto , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Fosfoproteínas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
8.
PLoS Comput Biol ; 14(6): e1006201, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29879102

RESUMEN

Important cellular processes such as migration, differentiation, and development often rely on precise timing. Yet, the molecular machinery that regulates timing is inherently noisy. How do cells achieve precise timing with noisy components? We investigate this question using a first-passage-time approach, for an event triggered by a molecule that crosses an abundance threshold and that is regulated by either an accumulating activator or a diminishing repressor. We find that either activation or repression outperforms an unregulated strategy. The optimal regulation corresponds to a nonlinear increase in the amount of the target molecule over time, arises from a tradeoff between minimizing the timing noise of the regulator and that of the target molecule itself, and is robust to additional effects such as bursts and cell division. Our results are in quantitative agreement with the nonlinear increase and low noise of mig-1 gene expression in migrating neuroblast cells during Caenorhabditis elegans development. These findings suggest that dynamic regulation may be a simple and powerful strategy for precise cellular timing.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Biológicos , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Biología Computacional , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Neuronas/citología , Neuronas/fisiología , Factores de Tiempo
9.
PLoS Genet ; 10(2): e1004133, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516405

RESUMEN

Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Regulación de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Dominios HMG-Box/genética , Proteínas del Grupo de Alta Movilidad/genética , Motivos de Nucleótidos/genética , Unión Proteica , Proteínas Represoras/genética , Transducción de Señal/genética , Vía de Señalización Wnt/genética
10.
Genesis ; 54(4): 198-211, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26934462

RESUMEN

During development, cell migration plays a central role in the formation of tissues and organs. Understanding the molecular mechanisms that drive and control these migrations is a key challenge in developmental biology that will provide important insights into disease processes, including cancer cell metastasis. In this article, we discuss the Caenorhabditis elegans Q neuroblasts and their descendants as a tool to study cell migration at single-cell resolution in vivo. The highly stereotypical migration of these cells provides a powerful system to study the dynamic cytoskeletal processes that drive migration as well as the evolutionarily conserved signaling pathways (including different Wnt signaling cascades) that guide the cells along their specific trajectories. Here, we provide an overview of what is currently known about Q neuroblast migration and highlight the live-cell imaging, genome editing, and quantitative gene expression techniques that have been developed to study this process.


Asunto(s)
Blástula/citología , Caenorhabditis elegans/crecimiento & desarrollo , Células-Madre Neurales/citología , Análisis de la Célula Individual/métodos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Movimiento Celular , Polaridad Celular , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Transducción de Señal
11.
Development ; 139(12): 2234-45, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22619391

RESUMEN

Coordinated movement depends on the creation of synapses between specific neurons in the motor circuit. In C. elegans, this important decision is regulated by the UNC-4 homeodomain protein. unc-4 mutants are unable to execute backward locomotion because VA motor neurons are mis-wired with inputs normally reserved for their VB sisters. We have proposed that UNC-4 functions in VAs to block expression of VB genes. This model is substantiated by the finding that ectopic expression of the VB gene ceh-12 (encoding a homolog of the homeodomain protein HB9) in unc-4 mutants results in the mis-wiring of posterior VA motor neurons with VB-like connections. Here, we show that VA expression of CEH-12 depends on a nearby source of the Wnt protein EGL-20. Our results indicate that UNC-4 prevents VAs from responding to a local EGL-20 cue by disabling a canonical Wnt signaling cascade involving the Frizzled receptors MIG-1 and MOM-5. CEH-12 expression in VA motor neurons is also opposed by a separate pathway that includes the Wnt ligand LIN-44. This work has revealed a transcriptional mechanism for modulating the sensitivity of specific neurons to diffusible Wnt ligands and thereby defines distinct patterns of synaptic connectivity. The existence of comparable Wnt gradients in the vertebrate spinal cord could reflect similar roles for Wnt signaling in vertebrate motor circuit assembly.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Homeodominio/metabolismo , Neuronas Motoras/metabolismo , Red Nerviosa/metabolismo , Proteínas Nucleares/metabolismo , Sinapsis/metabolismo , Vía de Señalización Wnt , Animales , Biomarcadores/metabolismo , Caenorhabditis elegans/genética , Uniones Comunicantes/metabolismo , Genes de Helminto/genética , Glicoproteínas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Interneuronas/metabolismo , Modelos Anatómicos , Movimiento/fisiología , Receptores Wnt/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción , Proteínas Wnt
12.
EMBO J ; 29(24): 4094-105, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21076391

RESUMEN

Wnt proteins are lipid-modified glycoproteins that have important roles in development, adult tissue homeostasis and disease. Secretion of Wnt proteins from producing cells is mediated by the Wnt-binding protein MIG-14/Wls, which binds Wnt in the Golgi network and transports it to the cell surface for release. It has recently been shown that recycling of MIG-14/Wls from the plasma membrane to the trans-Golgi network is required for efficient Wnt secretion, but the mechanism of this retrograde transport pathway is still poorly understood. In this study, we report the identification of MTM-6 and MTM-9 as novel regulators of MIG-14/Wls trafficking in Caenorhabditis elegans. MTM-6 and MTM-9 are myotubularin lipid phosphatases that function as a complex to dephosphorylate phosphatidylinositol-3-phosphate, a central regulator of endosomal trafficking. We show that mutation of mtm-6 or mtm-9 leads to defects in several Wnt-dependent processes and demonstrate that MTM-6 is required in Wnt-producing cells as part of the MIG-14/Wls-recycling pathway. This function is evolutionarily conserved, as the MTM-6 orthologue DMtm6 is required for Wls stability and Wg secretion in Drosophila. We conclude that regulation of endosomal trafficking by the MTM-6/MTM-9 myotubularin complex is required for the retromer-dependent recycling of MIG-14/Wls and Wnt secretion.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Proteínas Portadoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Drosophila/enzimología , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Péptidos y Proteínas de Señalización Intracelular , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Wnt/metabolismo
13.
Development ; 138(14): 2915-24, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21653614

RESUMEN

The migration of neuroblasts along the anteroposterior body axis of C. elegans is controlled by multiple Wnts that act partially redundantly to guide cells to their precisely defined final destinations. How positional information is specified by this system is, however, still largely unknown. Here, we used a novel fluorescent in situ hybridization methods to generate a quantitative spatiotemporal expression map of the C. elegans Wnt genes. We found that the five Wnt genes are expressed in a series of partially overlapping domains along the anteroposterior axis, with a predominant expression in the posterior half of the body. Furthermore, we show that a secreted Frizzled-related protein is expressed at the anterior end of the body axis, where it inhibits Wnt signaling to control neuroblast migration. Our findings reveal that a system of regionalized Wnt gene expression and anterior Wnt inhibition guides the highly stereotypic migration of neuroblasts in C. elegans. Opposing expression of Wnts and Wnt inhibitors has been observed in basal metazoans and in the vertebrate neurectoderm. Our results in C. elegans support the notion that a system of posterior Wnt signaling and anterior Wnt inhibition is an evolutionarily conserved principle of primary body axis specification.


Asunto(s)
Tipificación del Cuerpo/fisiología , Caenorhabditis elegans/embriología , Movimiento Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Glicoproteínas/metabolismo , Neuronas/fisiología , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Animales , Clonación Molecular , Hibridación Fluorescente in Situ , Péptidos y Proteínas de Señalización Intracelular , Neuronas/citología , Plásmidos/genética
14.
Mol Syst Biol ; 9: 631, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23295860

RESUMEN

Establishment of cell polarity is crucial for many biological processes including cell migration and asymmetric cell division. The establishment of cell polarity consists of two sequential processes: an external gradient is first sensed and then the resulting signal is amplified and maintained by intracellular signaling networks usually using positive feedback regulation. Generally, these two processes are intertwined and it is challenging to determine which proteins contribute to the sensing or amplification process, particularly in multicellular organisms. Here, we integrated phenomenological modeling with quantitative single-cell measurements to separate the sensing and amplification components of Wnt ligands and receptors during establishment of polarity of the Caenorhabditis elegans P cells. By systematically exploring how P-cell polarity is altered in Wnt ligand and receptor mutants, we inferred that ligands predominantly affect the sensing process, whereas receptors are needed for both sensing and amplification. This integrated approach is generally applicable to other systems and will facilitate decoupling of the different layers of signal sensing and amplification.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Polaridad Celular/fisiología , Receptores Wnt/metabolismo , Proteínas Wnt/metabolismo , Animales , División Celular Asimétrica , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Mutación , Receptores Wnt/genética , Análisis de la Célula Individual , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Wnt/genética , beta Catenina/metabolismo
15.
Mol Syst Biol ; 9: 679, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23820781

RESUMEN

Mutations in the daf-2 gene of the conserved Insulin/Insulin-like Growth Factor (IGF-1) pathway double the lifespan of the nematode Caenorhabditis elegans. This phenotype is completely suppressed by deletion of Forkhead transcription factor daf-16. To uncover regulatory mechanisms coordinating this extension of life, we employed a quantitative proteomics strategy with daf-2 mutants in comparison with N2 and daf-16; daf-2 double mutants. This revealed a remarkable longevity-specific decrease in proteins involved in mRNA processing and transport, the translational machinery, and protein metabolism. Correspondingly, the daf-2 mutants display lower amounts of mRNA and 20S proteasome activity, despite maintaining total protein levels equal to that observed in wild types. Polyribosome profiling in the daf-2 and daf-16;daf-2 double mutants confirmed a daf-16-dependent reduction in overall translation, a phenotype reminiscent of Dietary Restriction-mediated longevity, which was independent of germline activity. RNA interference (RNAi)-mediated knockdown of proteins identified by our approach resulted in modified C. elegans lifespan confirming the importance of these processes in Insulin/IGF-1-mediated longevity. Together, the results demonstrate a role for the metabolism of proteins in the Insulin/IGF-1-mediated extension of life.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Factor I del Crecimiento Similar a la Insulina/genética , Insulina/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Receptor de Insulina/genética , Factores de Transcripción/genética , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Genotipo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Longevidad/genética , Mutación , Fenotipo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Receptor de Insulina/antagonistas & inhibidores , Receptor de Insulina/metabolismo , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
16.
Proc Natl Acad Sci U S A ; 108(20): 8305-10, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21527717

RESUMEN

Methylation of histone H3 lysine 4 (H3K4me), a mark associated with gene activation, is mediated by SET1 and the related mixed lineage leukemia (MLL) histone methyltransferases (HMTs) across species. Mammals contain seven H3K4 HMTs, Set1A, Set1B, and MLL1-MLL5. The activity of SET1 and MLL proteins relies on protein-protein interactions within large multisubunit complexes that include three core components: RbBP5, Ash2L, and WDR5. It remains unclear how the composition and specificity of these complexes varies between cell types and during development. Caenorhabditis elegans contains one SET1 protein, SET-2, one MLL-like protein, SET-16, and single homologs of RbBP5, Ash2L, and WDR5. Here we show that SET-2 is responsible for the majority of bulk H3K4 methylation at all developmental stages. However, SET-2 and absent, small, or homeotic discs 2 (ASH-2) are differentially required for tri- and dimethylation of H3K4 (H3K4me3 and -me2) in embryos and adult germ cells. In embryos, whereas efficient H3K4me3 requires both SET-2 and ASH-2, H3K4me2 relies mostly on ASH-2. In adult germ cells by contrast, SET-2 serves a major role whereas ASH-2 is dispensable for H3K4me3 and most H3K4me2. Loss of SET-2 results in progressive sterility over several generations, suggesting an important function in the maintenance of a functional germ line. This study demonstrates that individual subunits of SET1-related complexes can show tissue specificity and developmental regulation and establishes C. elegans as a model to study SET1-related complexes in a multicellular organism.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Embrión no Mamífero/metabolismo , Células Germinativas/metabolismo , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/metabolismo , Proteínas Nucleares/fisiología , Animales , Lisina/metabolismo , Metilación , Proteínas de Saccharomyces cerevisiae/fisiología
17.
Dev Biol ; 361(2): 338-48, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22074987

RESUMEN

Wnt proteins are secreted signaling molecules that play a central role in development and adult tissue homeostasis. Although several Wnt signal transduction mechanisms have been described in detail, it is still largely unknown how cells are specified to adopt such different Wnt signaling responses. Here, we have used the stereotypic migration of the C. elegans Q neuroblasts as a model to study how two initially equivalent cells are instructed to activate either ß-catenin dependent or independent Wnt signaling pathways to control the migration of their descendants along the anteroposterior axis. We find that the specification of this difference in Wnt signaling response is dependent on the thrombospondin repeat containing protein MIG-21, which acts together with the netrin receptor UNC-40/DCC to control an initial left-right asymmetric polarization of the Q neuroblasts. Furthermore, we show that the direction of this polarization determines the threshold for Wnt/ß-catenin signaling, with posterior polarization sensitizing for activation of this pathway. We conclude that MIG-21 and UNC-40 control the asymmetry in Wnt signaling response by restricting posterior polarization to one of the two Q neuroblasts.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Movimiento Celular , Neuronas/citología , Secuencias Repetitivas de Aminoácido , Vía de Señalización Wnt , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Polaridad Celular , Espacio Extracelular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Netrina , Neuronas/metabolismo , Receptores de Superficie Celular/metabolismo , Trombospondinas/química
18.
Dev Cell ; 14(1): 140-7, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18160347

RESUMEN

Wnt proteins are secreted signaling molecules that play a central role in development and adult tissue homeostasis. We have previously shown that Wnt signaling requires retromer function in Wnt-producing cells. The retromer is a multiprotein complex that mediates endosome-to-Golgi transport of specific sorting receptors. MIG-14/Wls is a conserved transmembrane protein that binds Wnt and is required in Wnt-producing cells for Wnt secretion. Here, we demonstrate that in the absence of retromer function, MIG-14/Wls is degraded in lysosomes and becomes limiting for Wnt signaling. We show that retromer-dependent recycling of MIG-14/Wls is part of a trafficking pathway that retrieves MIG-14/Wls from the plasma membrane. We propose that MIG-14/Wls cycles between the Golgi and the plasma membrane to mediate Wnt secretion. Regulation of this transport pathway may enable Wnt-producing cells to control the range of Wnt signaling in the tissue.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Proteínas Portadoras/fisiología , Proteínas Wnt/fisiología , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Línea Celular , Membrana Celular/fisiología , Endosomas/fisiología , Aparato de Golgi/fisiología , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Riñón , Proteínas Recombinantes/metabolismo , Transfección , Proteínas Wnt/genética
19.
Elife ; 122023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184061

RESUMEN

Many developmental processes depend on precise temporal control of gene expression. We have previously established a theoretical framework for regulatory strategies that can govern such high temporal precision, but experimental validation of these predictions was still lacking. Here, we use the time-dependent expression of a Wnt receptor that controls neuroblast migration in Caenorhabditis elegans as a tractable system to study a robust, cell-intrinsic timing mechanism in vivo. Single-molecule mRNA quantification showed that the expression of the receptor increases non-linearly, a dynamic that is predicted to enhance timing precision over an unregulated, linear increase in timekeeper abundance. We show that this upregulation depends on transcriptional activation, providing in vivo evidence for a model in which the timing of receptor expression is regulated through an accumulating activator that triggers expression when a specific threshold is reached. This timing mechanism acts across a cell division that occurs in the neuroblast lineage and is influenced by the asymmetry of the division. Finally, we show that positive feedback of receptor expression through the canonical Wnt pathway enhances temporal precision. We conclude that robust cell-intrinsic timing can be achieved by combining regulation and feedback of the timekeeper gene.


Asunto(s)
Proteínas de Caenorhabditis elegans , Factores de Transcripción , Animales , Factores de Transcripción/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Retroalimentación , Caenorhabditis elegans/metabolismo , Movimiento Celular/genética , Regulación del Desarrollo de la Expresión Génica
20.
Traffic ; 10(3): 334-43, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19207483

RESUMEN

Little is known about the release and intercellular transport of Wnt proteins from mammalian cells. Lipoproteins may act as carriers for the intercellular movement and gradient formation of the lipid-linked morphogens Wingless and Hedgehog in Drosophila. To investigate whether such a mechanism can occur in mammals, we have studied Wnt release in cultured mammalian cells. Wnt3a associated with lipoproteins in the culture medium and not with extracellular vesicles or exosomes. Although Wnt3a was associated with both high-density lipoproteins (HDL) and low-density lipoproteins, only HDL allowed Wnt3a release from mouse fibroblasts. Remarkably, Wnt3a lacking its palmitate moiety was released in a lipoprotein-independent manner, demonstrating the dual role of palmitoylation in membrane and lipoprotein binding. We additionally found that Wnt3a can be released from enterocyte cell lines on endogenously expressed lipoproteins. We further discuss the physiological implications of our findings.


Asunto(s)
Lipoproteínas/metabolismo , Proteínas Wnt/metabolismo , Animales , Línea Celular , Cricetinae , Proteínas de Transporte de Ácidos Grasos/metabolismo , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA