Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Microsc ; 293(3): 177-188, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38353282

RESUMEN

DPC in Scanning Transmission Electron Microscopy (STEM) is a valuable method for mapping the electric fields in semiconductor materials. However, optimising the experimental conditions can be challenging. In this paper, we test and compare critical experimental parameters, including the convergence angle, camera length, acceleration voltage, sample configuration, and orientation using a four-quadrant segmented detector and a Si specimen containing layers of different As concentrations. The DPC measurements show a roughly linear correlation with the estimated electric fields, until the field gets close to the detection limitation, which is ∼0.5 mV/nm with a sample thickness of ∼145 nm. These results can help inform which technique to use for different user cases: When the electric field at a planar junction is above ∼0.5 mV/nm, DPC with a segmented detector is practical for electric field mapping. With a planar junction, the DPC signal-to-noise ratio can be increased by increasing the specimen thickness. However, for semiconductor devices with electric fields smaller than ∼0.5 mV/nm, or for devices containing curved junctions, DPC is unreliable and techniques with higher sensitivity will need to be explored, such as 4D STEM using a pixelated detector.

2.
Nano Lett ; 21(24): 10409-10415, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34882420

RESUMEN

Magnetic nanowires (NWs) are essential building blocks of spintronics devices as they offer tunable magnetic properties and anisotropy through their geometry. While the synthesis and compositional control of NWs have seen major improvements, considerable challenges remain for the characterization of local magnetic features at the nanoscale. Here, we demonstrate nonperturbative field distribution mapping in ultrascaled magnetic nanowires with diameters down to 6 nm by scanning nitrogen-vacancy magnetometry. This enables localized, minimally invasive magnetic imaging with sensitivity down to 3 µT Hz-1/2. The imaging reveals the presence of weak magnetic inhomogeneities inside in-plane magnetized nanowires that are largely undetectable with standard metrology and can be related to local fluctuations of the NWs' saturation magnetization. In addition, the strong magnetic field confinement in the nanowires allows for the study of the interaction between the stray magnetic field and the nitrogen-vacancy sensor, thus clarifying the contrasting formation mechanisms for technologically relevant magnetic nanostructures.


Asunto(s)
Diamante , Nanocables , Diamante/química , Campos Magnéticos , Magnetismo/métodos , Nitrógeno/química
3.
Nanotechnology ; 28(27): 275201, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28612754

RESUMEN

We present a study of blue III-nitride light-emitting diodes (LEDs) with multiple quantum well (MQW) and quantum dot (QD) active regions (ARs), comparing experimental and theoretical results. The LED samples were grown by metalorganic vapor phase epitaxy, utilizing growth interruption in the hydrogen/nitrogen atmosphere and variable reactor pressure to control the AR microstructure. Realistic configuration of the QD AR implied in simulations was directly extracted from HRTEM characterization of the grown QD-based structures. Multi-scale 2D simulations of the carrier transport inside the multiple QD AR have revealed a non-trivial pathway for carrier injection into the dots. Electrons and holes are found to penetrate deep into the multi-layer AR through the gaps between individual QDs and get into the dots via their side edges rather than via top and bottom interfaces. This enables a more homogeneous carrier distribution among the dots situated in different layers than among the laterally uniform quantum well (QWs) in the MQW AR. As a result, a lower turn-on voltage is predicted for QD-based LEDs, as compared to MQW ones. Simulations did not show any remarkable difference in the efficiencies of the MQW and QD-based LEDs, if the same recombination coefficients are utilized, i.e. a similar crystal quality of both types of LED structures is assumed. Measurements of the current-voltage characteristics of LEDs with both kinds of the AR have shown their close similarity, in contrast to theoretical predictions. This implies the conventional assumption of laterally uniform QWs not to be likely an adequate approximation for the carrier transport in MQW LED structures. Optical characterization of MQW and QD-based LEDs has demonstrated that the later ones exhibit a higher efficiency, which could be attributed to better crystal quality of the grown QD-based structures. The difference in the crystal quality explains the recently observed correlation between the growth pressure of LED structures and their efficiency and should be taken into account while further comparing performances of MQW and QD-based LEDs. In contrast to experimental results, our simulations did not reveal any advantages of using QD-based ARs over the MQW ones, if the same recombination constants are assumed for both cases. This fact demonstrates importance of accounting for growth-dependent factors, like crystal quality, which may limit the device performance. Nevertheless, a more uniform carrier injection into multi-layer QD ARs predicted by modeling may serve as the basis for further improvement of LED efficiency by lowering carrier density in individual QDs and, hence, suppressing the Auger recombination losses.

4.
Nanotechnology ; 25(30): 305703, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25008561

RESUMEN

We report on the influence of a capping layer on the photoluminescence properties of self-assembled GaN quantum dots grown on an Al(0.5)Ga(0.5)N template. Self-assembled GaN quantum dots show a large quantum confined Stark shift and long carrier recombination time due to strong built-in spontaneous and piezoelectric polarization fields. Nevertheless, owing to strong carrier localization and suppressed nonradiative processes, these quantum dots have a high-quantum efficiency even at room temperature. Here, we show that the capping thickness has an important role on the optical properties of the GaN quantum dots. The radiative and nonradiative recombination processes of quantum dots are strongly affected by adjusting the capping thickness, and the GaN quantum dots with 12 monolayers-thick Al(0.5)Ga(0.5)N capping layer show a remarkably high internal quantum efficiency of more than 80% at room temperature. We also studied photoluminescence quenching and enhancement for surface (uncapped) quantum dots caused by photoadsorption and photodesorption of oxygen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA