Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Metab Eng ; 60: 148-156, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32302770

RESUMEN

The actinomycete Amycolatopsis japonicum is the producer of the chelating compound [S,S]-ethylenediamine-disuccinc acid (EDDS). [S,S]-EDDS is an isomer of ethylenediamine-tetraacetic acid (EDTA), an economically important chelating compound that suffers from an extremely poor degradability. Frequent use of the persistent EDTA in various industrial and domestic applications has caused an accumulation of EDTA in soil as well as in aqueous environments. As a consequence, EDTA is the highest concentrated anthropogenic compound present in water reservoirs. The [S,S]-form of EDDS has chelating properties similar to EDTA, however, in contrast to EDTA it is readily biodegradable. In order to compete with the cost-effective chemical synthesis of EDTA, we aimed to optimize the biotechnological production of [S,S]-EDDS in A. japonicum by using metabolic engineering approaches. Firstly, we integrated several copies of the [S,S]-EDDS biosynthetic genes into the chromosome of A. japonicum and replaced the native zinc responsive promoter with the strong synthetic constitutive promoter SP44*. Secondly, we increased the supply of O-phospho-serine, the direct precursor of [S,S]-EDDS. The combination of these approaches together with the optimized fermentation process led to a significant improvement in [S,S]-EDDS up to 9.8 g/L with a production rate of 4.3 mg/h/g DCW.


Asunto(s)
Quelantes/química , Etilenodiaminas/metabolismo , Ingeniería Metabólica/métodos , Amycolatopsis/metabolismo , Biodegradación Ambiental , Reactores Biológicos , Ácido Edético/química , Escherichia coli , Etilenodiaminas/química , Fermentación , Regiones Promotoras Genéticas/efectos de los fármacos , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Zinc/farmacología
2.
Nat Chem Biol ; 11(10): 784-92, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26322826

RESUMEN

The metabolic cofactor coenzyme A (CoA) gained renewed attention because of its roles in neurodegeneration, protein acetylation, autophagy and signal transduction. The long-standing dogma is that eukaryotic cells obtain CoA exclusively via the uptake of extracellular precursors, especially vitamin B5, which is intracellularly converted through five conserved enzymatic reactions into CoA. This study demonstrates an alternative mechanism that allows cells and organisms to adjust intracellular CoA levels by using exogenous CoA. Here CoA was hydrolyzed extracellularly by ectonucleotide pyrophosphatases to 4'-phosphopantetheine, a biologically stable molecule able to translocate through membranes via passive diffusion. Inside the cell, 4'-phosphopantetheine was enzymatically converted back to CoA by the bifunctional enzyme CoA synthase. Phenotypes induced by intracellular CoA deprivation were reversed when exogenous CoA was provided. Our findings answer long-standing questions in fundamental cell biology and have major implications for the understanding of CoA-related diseases and therapies.


Asunto(s)
Caenorhabditis elegans/metabolismo , Coenzima A/biosíntesis , Drosophila/metabolismo , Panteteína/análogos & derivados , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Línea Celular , Coenzima A/sangre , Coenzima A/farmacología , Coenzima A Ligasas/metabolismo , Drosophila/citología , Drosophila/crecimiento & desarrollo , Femenino , Células HEK293 , Humanos , Longevidad/fisiología , Masculino , Ratones Endogámicos C57BL , Panteteína/sangre , Panteteína/metabolismo , Panteteína/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
3.
Microb Cell Fact ; 15: 93, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27255285

RESUMEN

BACKGROUND: Omics approaches have significantly increased our understanding of biological systems. However, they have had limited success in explaining the dramatically increased productivity of commercially important natural products by industrial high-producing strains, such as the erythromycin-producing actinomycete Saccharopolyspora erythraea. Further yield increase is of great importance but requires a better understanding of the underlying physiological processes. RESULTS: To reveal the mechanisms related to erythromycin yield increase, we have undertaken an integrated study of the genomic, transcriptomic, and proteomic differences between the wild type strain NRRL2338 (WT) and the industrial high-producing strain ABE1441 (HP) of S. erythraea at multiple time points of a simulated industrial bioprocess. 165 observed mutations lead to differences in gene expression profiles and protein abundance between the two strains, which were most prominent in the initial stages of erythromycin production. Enzymes involved in erythromycin biosynthesis, metabolism of branched chain amino acids and proteolysis were most strongly upregulated in the HP strain. Interestingly, genes related to TCA cycle and DNA-repair were downregulated. Additionally, comprehensive data analysis uncovered significant correlations in expression profiles of the erythromycin-biosynthetic genes, other biosynthetic gene clusters and previously unidentified putative regulatory genes. Based on this information, we demonstrated that overexpression of several genes involved in amino acid metabolism can contribute to increased yield of erythromycin, confirming the validity of our systems biology approach. CONCLUSIONS: Our comprehensive omics approach, carried out in industrially relevant conditions, enabled the identification of key pathways affecting erythromycin yield and suggests strategies for rapid increase in the production of secondary metabolites in industrial environment.


Asunto(s)
Antibacterianos/biosíntesis , Eritromicina/biosíntesis , Saccharopolyspora/metabolismo , Antibacterianos/química , Proteínas Bacterianas/metabolismo , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Eritromicina/química , Perfilación de la Expresión Génica , Genes Bacterianos , Genómica , Espectrometría de Masas , Ingeniería Metabólica , Proteómica
4.
Microb Cell Fact ; 14: 164, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26466669

RESUMEN

BACKGROUND: In microorganisms lacking a functional glyoxylate cycle, acetate can be assimilated by alternative pathways of carbon metabolism such as the ethylmalonyl-CoA (EMC) pathway. Among the enzymes converting CoA-esters of the EMC pathway, there is a unique carboxylase that reductively carboxylates crotonyl-CoA, crotonyl-CoA carboxylase/reductase (Ccr). In addition to the EMC pathway, gene homologues of ccr can be found in secondary metabolite gene clusters that are involved in the provision of structurally diverse extender units used in the biosynthesis of polyketide natural products. The roles of multiple ccr homologues in the same genome and their potential interactions in primary and secondary metabolic pathways are poorly understood. RESULTS: In the genome of S. tsukubaensis we have identified two ccr homologues; ccr1 is located in the putative ethylmalonyl-CoA (emc) operon and allR is located on the left fringe of the FK506 cluster. AllR provides an unusual extender unit allylmalonyl-CoA (ALL) for the biosynthesis of FK506 and potentially also ethylmalonyl-CoA for the related compound FK520. We have demonstrated that in S. tsukubaensis the ccr1 gene does not have a significant role in the biosynthesis of FK506 or FK520 when cultivated on carbohydrate-based media. However, when overexpressed under the control of a strong constitutive promoter, ccr1 can take part in the biosynthesis of ethylmalonyl-CoA and thereby FK520, but not FK506. In contrast, if ccr1 is inactivated, allR is not able to sustain a functional ethylmalonyl-CoA pathway (EMC) and cannot support growth on acetate as the sole carbon source, even when constitutively expressed in the chimeric emc operon. This is somewhat surprising considering that the same chimeric emc operon results in production of FK506 as well as FK520, consistent with the previously proposed relaxed specificity of AllR for C4 and C5 substrates. CONCLUSIONS: Different regulation of the expression of both ccr genes, ccr1 and allR, and their corresponding pathways EMC and ALL, respectively, in combination with the different enzymatic properties of the Ccr1 and AllR enzymes, determine an almost exclusive role of ccr1 in the EMC pathway in S. tsukubaensis, and an exclusive role of allR in the biosynthesis of FK506/FK520, thus separating the functional roles of these two genes between the primary and secondary metabolic pathways.


Asunto(s)
Acil-CoA Deshidrogenasas/genética , Proteínas Bacterianas/genética , Inmunosupresores/metabolismo , Streptomyces/metabolismo , Tacrolimus/metabolismo , Acetatos/metabolismo , Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Acil-CoA Deshidrogenasas/metabolismo , Proteínas Bacterianas/metabolismo , Inmunosupresores/química , Familia de Multigenes , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa , Streptomyces/química , Streptomyces/genética , Tacrolimus/química , Transcriptoma
5.
Rapid Commun Mass Spectrom ; 29(17): 1556-1562, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28339151

RESUMEN

RATIONALE: When applying biosynthetic engineering approaches at the early stages of drug discovery, e.g. aiming to develop novel tetracycline analogues, target compounds are generally produced by engineered microorganisms in low yields. Rapid and reliable identification of metabolites with desired structural modification directly from bacterial cultures is therefore of great importance. METHODS: Structural elucidation of atypical tetracyclines was carried out by fragmentation applying electrospray ionisation tandem mass spectrometry (ESI-MS/MS) (triple quadrupole - linear ion trap; Applied Biosystems 4000 QTRAP) and a high-resolution mass spectrometer (Agilent Technologies 6224 TOF). Fragmentation patterns were obtained either with direct injection or by applying separation of target compounds with high-performance liquid chromatography (HPLC) prior to mass spectrometry. In-source and CID fragmentation were compared. Theoretical calculations of target structures using the Gaussian programme suite were carried out with the aim of strengthening experimental structural elucidation. RESULTS: Recombinant strains of Amycolatopsis sulphurea producing atypical tetracyclines chelocardin, modified chelocardin analogues (9-demethylchelocardin and 2-carboxyamido-2-deacetyl-chelocardin (CDCHD), and anhydrotetracycline (ATC) were analysed by collision-induced dissociation (CID) fragmentation with higher collision energies to yield structurally important fragments which were identified. We have demonstrated that ATC is more prone to fragmentation compared to its epimer, which was further supported by comparison of both structures calculated with ab initio calculations. CONCLUSIONS: We have demonstrated that fragmentation patterns of atypical tetracyclines in CID-MS spectra enable rapid structural elucidation of target metabolites produced by cultures of genetically engineered bacteria. This method is of significant importance for early stages of drug development considering that isolation of target metabolites produced at low concentration is challenging. Copyright © 2015 John Wiley & Sons, Ltd.

6.
Angew Chem Int Ed Engl ; 54(13): 3937-40, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25650563

RESUMEN

Antimicrobial resistance and the shortage of novel antibiotics have led to an urgent need for new antibacterial drug leads. Several existing natural product scaffolds (including chelocardins) have not been developed because their suboptimal pharmacological properties could not be addressed at the time. It is demonstrated here that reviving such compounds through the application of biosynthetic engineering can deliver novel drug candidates. Through a rational approach, the carboxamido moiety of tetracyclines (an important structural feature for their bioactivity) was introduced into the chelocardins, which are atypical tetracyclines with an unknown mode of action. A broad-spectrum antibiotic lead was generated with significantly improved activity, including against all Gram-negative pathogens of the ESKAPE panel. Since the lead structure is also amenable to further chemical modification, it is a platform for further development through medicinal chemistry and genetic engineering.


Asunto(s)
Antibacterianos/síntesis química , Tetraciclinas/síntesis química , Antibacterianos/farmacología , Química Farmacéutica , Farmacorresistencia Bacteriana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Ingeniería de Proteínas , Relación Estructura-Actividad , Tetraciclinas/farmacología
7.
J Sci Comput ; 100(2): 51, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966340

RESUMEN

We present an algorithm for fast generation of quasi-uniform and variable-spacing nodes on domains whose boundaries are represented as computer-aided design (CAD) models, more specifically non-uniform rational B-splines (NURBS). This new algorithm enables the solution of partial differential equations within the volumes enclosed by these CAD models using (collocation-based) meshless numerical discretizations. Our hierarchical algorithm first generates quasi-uniform node sets directly on the NURBS surfaces representing the domain boundary, then uses the NURBS representation in conjunction with the surface nodes to generate nodes within the volume enclosed by the NURBS surface. We provide evidence for the quality of these node sets by analyzing them in terms of local regularity and separation distances. Finally, we demonstrate that these node sets are well-suited (both in terms of accuracy and numerical stability) for meshless radial basis function generated finite differences discretizations of the Poisson, Navier-Cauchy, and heat equations. Our algorithm constitutes an important step in bridging the field of node generation for meshless discretizations with isogeometric analysis.

8.
Biol Chem ; 394(2): 307-16, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23152404

RESUMEN

Osteoarthritis and rheumatoid arthritis are destructive joint diseases that involve the loss of articular cartilage. Degradation of cartilage extracellular matrix is believed to occur due to imbalance between the catabolic and anabolic processes of resident chondrocytes. Previous work has suggested that various lysosomal cysteine cathepsins participate in cartilage degeneration; however, their exact roles in disease development and progression have not been elucidated. In order to study degradation processes under conditions resembling the in vivo milieu of the cartilage, we cultivated chondrocytes on a type II collagen-containing matrix. Stimulation of the cultivated chondrocytes with interleukin-1α and/or tumor necrosis factor α resulted in a time-dependent increase in cathepsin S expression and induced its secretion into the conditioned media. Using a novel bioluminescent activity-based probe, we were able to demonstrate a significant increase in proteolytic activity of cathepsin S in the conditioned media of proinflammatory cytokine-stimulated chondrocytes. For the first time, cathepsin S was demonstrated to be secreted from chondrocytes upon stimulation with the proinflammatory cytokines, and displayed proteolytic activity in culture supernatants. Its stability at neutral pH and potent proteolytic activity on extracellular matrix components mean that cathepsin S may contribute significantly to cartilage degradation and may thus be considered a potential drug target in joint diseases.


Asunto(s)
Catepsinas/biosíntesis , Catepsinas/metabolismo , Condrocitos/metabolismo , Inflamación/metabolismo , Interleucina-1alfa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Células Cultivadas , Humanos , Proteolisis
9.
Microb Cell Fact ; 12: 126, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24341557

RESUMEN

BACKGROUND: Erythromycin is a medically important antibiotic, biosynthesized by the actinomycete Saccharopolyspora erythraea. Genes encoding erythromycin biosynthesis are organized in a gene cluster, spanning over 60 kbp of DNA. Most often, gene clusters encoding biosynthesis of secondary metabolites contain regulatory genes. In contrast, the erythromycin gene cluster does not contain regulatory genes and regulation of its biosynthesis has therefore remained poorly understood, which has for a long time limited genetic engineering approaches for erythromycin yield improvement. RESULTS: We used a comparative proteomic approach to screen for potential regulatory proteins involved in erythromycin biosynthesis. We have identified a putative regulatory protein SACE_5599 which shows significantly higher levels of expression in an erythromycin high-producing strain, compared to the wild type S. erythraea strain. SACE_5599 is a member of an uncharacterized family of putative regulatory genes, located in several actinomycete biosynthetic gene clusters. Importantly, increased expression of SACE_5599 was observed in the complex fermentation medium and at controlled bioprocess conditions, simulating a high-yield industrial fermentation process in the bioreactor. Inactivation of SACE_5599 in the high-producing strain significantly reduced erythromycin yield, in addition to drastically decreasing sporulation intensity of the SACE_5599-inactivated strains when cultivated on ABSM4 agar medium. In contrast, constitutive overexpression of SACE_5599 in the wild type NRRL23338 strain resulted in an increase of erythromycin yield by 32%. Similar yield increase was also observed when we overexpressed the bldD gene, a previously identified regulator of erythromycin biosynthesis, thereby for the first time revealing its potential for improving erythromycin biosynthesis. CONCLUSIONS: SACE_5599 is the second putative regulatory gene to be identified in S. erythraea which has positive influence on erythromycin yield. Like bldD, SACE_5599 is involved in morphological development of S. erythraea, suggesting a very close relationship between secondary metabolite biosynthesis and morphological differentiation in this organism. While the mode of action of SACE_5599 remains to be elucidated, the manipulation of this gene clearly shows potential for improvement of erythromycin production in S. erythraea in industrial setting. We have also demonstrated the applicability of the comparative proteomics approach for identifying new regulatory elements involved in biosynthesis of secondary metabolites in industrial conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Eritromicina/metabolismo , Saccharopolyspora/metabolismo , Proteínas Bacterianas/genética , Eritromicina/biosíntesis , Ingeniería Genética , Saccharopolyspora/genética , Saccharopolyspora/crecimiento & desarrollo
10.
Commun Biol ; 6(1): 450, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095140

RESUMEN

Addressing the elusive specificity of cysteine cathepsins, which in contrast to caspases and trypsin-like proteases lack strict specificity determining P1 pocket, calls for innovative approaches. Proteomic analysis of cell lysates with human cathepsins K, V, B, L, S, and F identified 30,000 cleavage sites, which we analyzed by software platform SAPS-ESI (Statistical Approach to Peptidyl Substrate-Enzyme Specific Interactions). SAPS-ESI is used to generate clusters and training sets for support vector machine learning. Cleavage site predictions on the SARS-CoV-2 S protein, confirmed experimentally, expose the most probable first cut under physiological conditions and suggested furin-like behavior of cathepsins. Crystal structure analysis of representative peptides in complex with cathepsin V reveals rigid and flexible sites consistent with analysis of proteomics data by SAPS-ESI that correspond to positions with heterogeneous and homogeneous distribution of residues. Thereby support for design of selective cleavable linkers of drug conjugates and drug discovery studies is provided.


Asunto(s)
COVID-19 , Cisteína , Humanos , Proteómica , SARS-CoV-2
11.
Metab Eng ; 14(1): 39-46, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22100790

RESUMEN

FK506, a widely used immunosuppressant, is produced by industrial fermentation processes using various Streptomyces species. Independently of the strain, structurally related compound FK520 is co-produced, resulting in complex and costly isolation procedures. In this paper, we report a chemobiosynthetic approach for exclusive biosynthesis of FK506. This approach is based on the Streptomyces tsukubaensis strain with inactivated allR gene, a homologue of crotonyl-CoA carboxylase/reductase, encoded in the FK506 biosynthetic cluster. This strain produces neither FK506 nor FK520; however, if allylmalonyl-S-N-acetylcysteamine precursor is added to cultivation broth, the production of FK506 is reestablished without FK506-related by-products. Using a combination of metabolic engineering and chemobiosynthetic approach, we achieved exclusive production of FK506, representing a significant step towards development of an advanced industrial bioprocess.


Asunto(s)
Streptomyces/metabolismo , Tacrolimus/síntesis química , Tacrolimus/metabolismo , Acil-CoA Deshidrogenasas/genética , Acil-CoA Deshidrogenasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genes Bacterianos/genética , Streptomyces/genética , Tacrolimus/química
12.
Appl Environ Microbiol ; 78(23): 8183-90, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22983969

RESUMEN

The high G+C content and large genome size make the sequencing and assembly of Streptomyces genomes more difficult than for other bacteria. Many pharmaceutically important natural products are synthesized by modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The analysis of such gene clusters is difficult if the genome sequence is not of the highest quality, because clusters can be distributed over several contigs, and sequencing errors can introduce apparent frameshifts into the large PKS and NRPS proteins. An additional problem is that the modular nature of the clusters results in the presence of imperfect repeats, which may cause assembly errors. The genome sequence of Streptomyces tsukubaensis NRRL18488 was scanned for potential PKS and NRPS modular clusters. A phylogenetic approach was used to identify multiple contigs belonging to the same cluster. Four PKS clusters and six NRPS clusters were identified. Contigs containing cluster sequences were analyzed in detail by using the ClustScan program, which suggested the order and orientation of the contigs. The sequencing of the appropriate PCR products confirmed the ordering and allowed the correction of apparent frameshifts resulting from sequencing errors. The product chemistry of such correctly assembled clusters could also be predicted. The analysis of one PKS cluster showed that it should produce a bafilomycin-like compound, and reverse transcription (RT)-PCR was used to show that the cluster was transcribed.


Asunto(s)
Familia de Multigenes , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Streptomyces/enzimología , Streptomyces/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
13.
BMC Microbiol ; 12: 238, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-23083511

RESUMEN

BACKGROUND: FK506 (Tacrolimus) is an important immunosuppressant, produced by industrial biosynthetic processes using various Streptomyces species. Considering the complex structure of FK506, it is reasonable to expect complex regulatory networks controlling its biosynthesis. Regulatory elements, present in gene clusters can have a profound influence on the final yield of target product and can play an important role in development of industrial bioprocesses. RESULTS: Three putative regulatory elements, namely fkbR, belonging to the LysR-type family, fkbN, a large ATP-binding regulator of the LuxR family (LAL-type) and allN, a homologue of AsnC family regulatory proteins, were identified in the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488, a progenitor of industrial strains used for production of FK506. Inactivation of fkbN caused a complete disruption of FK506 biosynthesis, while inactivation of fkbR resulted in about 80% reduction of FK506 yield. No functional role in the regulation of the FK506 gene cluster has been observed for the allN gene. Using RT-PCR and a reporter system based on a chalcone synthase rppA, we demonstrated, that in the wild type as well as in fkbN- and fkbR-inactivated strains, fkbR is transcribed in all stages of cultivation, even before the onset of FK506 production, whereas fkbN expression is initiated approximately with the initiation of FK506 production. Surprisingly, inactivation of fkbN (or fkbR) does not abolish the transcription of the genes in the FK506 gene cluster in general, but may reduce expression of some of the tested biosynthetic genes. Finally, introduction of a second copy of the fkbR or fkbN genes under the control of the strong ermE* promoter into the wild type strain resulted in 30% and 55% of yield improvement, respectively. CONCLUSIONS: Our results clearly demonstrate the positive regulatory role of fkbR and fkbN genes in FK506 biosynthesis in S. tsukubaensis NRRL 18488. We have shown that regulatory mechanisms can differ substantially from other, even apparently closely similar FK506-producing strains, reported in literature. Finally, we have demonstrated the potential of these genetically modified strains of S. tsukubaensis for improving the yield of fermentative processes for production of FK506.


Asunto(s)
Vías Biosintéticas/genética , Regulación Bacteriana de la Expresión Génica , Streptomyces/genética , Streptomyces/metabolismo , Tacrolimus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Transcripción Genética
14.
Adv Biochem Eng Biotechnol ; 180: 169-212, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34761324

RESUMEN

Methanol is a reduced one-carbon (C1) compound. It supports growth of aerobic methylotrophs that gain ATP from reduced redox equivalents by respiratory phosphorylation in their electron transport chains. Notably, linear oxidation of methanol to carbon dioxide may yield three reduced redox equivalents if methanol oxidation is NAD-dependent as, e.g., in Bacillus methanolicus. Methanol has a higher degree of reduction per carbon than glucose (6 vs. 4), and thus, lends itself as an ideal carbon source for microbial production of reduced target compounds. However, C-C bond formation in the RuMP or serine cycle, a prerequisite for production of larger molecules, requires ATP and/or reduced redox equivalents. Moreover, heat dissipation and a high demand for oxygen during catabolic oxidation of methanol may pose challenges for fermentation processes. In this chapter, we summarize metabolic pathways for aerobic methanol utilization, aerobic methylotrophs as industrial production hosts, strain engineering, and methanol bioreactor processes. In addition, we provide technological and market outlooks.


Asunto(s)
Ingeniería Metabólica , Metanol , Adenosina Trifosfato/metabolismo , Fermentación , Redes y Vías Metabólicas , Metanol/metabolismo
15.
Microbiol Spectr ; 10(2): e0243421, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35377231

RESUMEN

Streptomyces rimosus ATCC 10970 is the parental strain of industrial strains used for the commercial production of the important antibiotic oxytetracycline. As an actinobacterium with a large linear chromosome containing numerous long repeat regions, high GC content, and a single giant linear plasmid (GLP), these genomes are challenging to assemble. Here, we apply a hybrid sequencing approach relying on the combination of short- and long-read next-generation sequencing platforms and whole-genome restriction analysis by using pulsed-field gel electrophoresis (PFGE) to produce a high-quality reference genome for this biotechnologically important bacterium. By using PFGE to separate and isolate plasmid DNA from chromosomal DNA, we successfully sequenced the GLP using Nanopore data alone. Using this approach, we compared the sequence of GLP in the parent strain ATCC 10970 with those found in two semi-industrial progenitor strains, R6-500 and M4018. Sequencing of the GLP of these three S. rimosus strains shed light on several rearrangements accompanied by transposase genes, suggesting that transposases play an important role in plasmid and genome plasticity in S. rimosus. The polished annotation of secondary metabolite biosynthetic pathways compared to metabolite analysis in the ATCC 10970 strain also refined our knowledge of the secondary metabolite arsenal of these strains. The proposed methodology is highly applicable to a variety of sequencing projects, as evidenced by the reliable assemblies obtained. IMPORTANCE The genomes of Streptomyces species are difficult to assemble due to long repeats, extrachromosomal elements (giant linear plasmids [GLPs]), rearrangements, and high GC content. To improve the quality of the S. rimosus ATCC 10970 genome, producer of oxytetracycline, we validated the assembly of GLPs by applying a new approach to combine pulsed-field gel electrophoresis separation and GLP isolation and sequenced the isolated GLP with Oxford Nanopore technology. By examining the sequenced plasmids of ATCC 10970 and two industrial progenitor strains, R6-500 and M4018, we identified large GLP rearrangements. Analysis of the assembled plasmid sequences shed light on the role of transposases in genome plasticity of this species. The new methodological approach developed for Nanopore sequencing is highly applicable to a variety of sequencing projects. In addition, we present the annotated reference genome sequence of ATCC 10970 with a detailed analysis of the biosynthetic gene clusters.


Asunto(s)
Secuenciación de Nanoporos , Oxitetraciclina , Streptomyces rimosus , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Oxitetraciclina/metabolismo , Plásmidos/genética , Streptomyces rimosus/genética , Streptomyces rimosus/metabolismo , Transposasas/genética , Transposasas/metabolismo
16.
J Biol Chem ; 285(19): 14292-300, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20194504

RESUMEN

FK506 (tacrolimus) is a secondary metabolite with a potent immunosuppressive activity, currently registered for use as immunosuppressant after organ transplantation. FK506 and FK520 are biogenetically related natural products that are synthesized by combined polyketide synthase/nonribosomal peptide synthetase systems. The entire gene cluster for biosynthesis of FK520 from Streptomyces hygroscopicus var. ascomyceticus has been cloned and sequenced. On the other hand, the FK506 gene cluster from Streptomyces sp. MA6548 (ATCC55098) was sequenced only partially, and it was reasonable to expect that additional genes would be required for the provision of substrate supply. Here we report the identification of a previously unknown region of the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488 containing genes encoding the provision of unusual building blocks for FK506 biosynthesis as well as a regulatory gene. Among others, we identified a group of genes encoding biosynthesis of the extender unit that forms the allyl group at carbon 21 of FK506. Interestingly, we have identified a small independent diketide synthase system involved in the biosynthesis of the allyl group. Inactivation of one of these genes, encoding an unusual ketosynthase domain, resulted in an FK506 nonproducing strain, and the production was restored when a synthetic analog of the allylmalonyl-CoA extender unit was added to the cultivation medium. Based on our results, we propose a biosynthetic pathway for the provision of an unusual five-carbon extender unit, which is carried out by a novel diketide synthase complex.


Asunto(s)
Inmunosupresores/metabolismo , Familia de Multigenes , Streptomyces/genética , Tacrolimus/metabolismo , Compuestos Alílicos/química , Compuestos Alílicos/metabolismo , Sistemas de Lectura Abierta , Sintasas Poliquetidas/metabolismo , Streptomyces/metabolismo , Tacrolimus/química
17.
FEMS Microbiol Lett ; 368(10)2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34057181

RESUMEN

Their biochemical versatility and biotechnological importance make actinomycete bacteria attractive targets for ambitious genetic engineering using the toolkit of synthetic biology. But their complex biology also poses unique challenges. This mini review discusses some of the recent advances in synthetic biology approaches from an actinomycete perspective and presents examples of their application to the rational improvement of industrially relevant strains.


Asunto(s)
Actinobacteria/genética , Biología Sintética/métodos , Actinobacteria/metabolismo , Microbiología Industrial/métodos , Microbiología Industrial/tendencias , Ingeniería Metabólica , Biología Sintética/tendencias
18.
Sports Med Health Sci ; 2(3): 126-131, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35782284

RESUMEN

Broadly accepted is that most knee injuries result from increased vertical forces, usually induced by an incidental ski fall, collision, or a high jump. We present a new non-contact knee injury mechanism that can happen during a ski turn. Such an injury is governed by a sudden inward turn of the inner ski and consequent swing of the inner leg followed by a nearly instant stop when locked by hip and knee joints. The model provides predictive results for a lateral tibial plateau compression fracture because several simplifications have been made. We confirmed that the modelled compression stresses at typical skiing conditions and with typical skiing equipment can provoke serious knee injuries. The awareness of skiers and skiing equipment industry of the described knee injury mechanism can act as an important injury-prevention factor.

19.
Sci Rep ; 9(1): 2410, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787404

RESUMEN

Spread of antimicrobial resistance and shortage of novel antibiotics have led to an urgent need for new antibacterials. Although aminoglycoside antibiotics (AGs) are very potent anti-infectives, their use is largely restricted due to serious side-effects, mainly nephrotoxicity and ototoxicity. We evaluated the ototoxicity of various AGs selected from a larger set of AGs on the basis of their strong antibacterial activities against multidrug-resistant clinical isolates of the ESKAPE panel: gentamicin, gentamicin C1a, apramycin, paromomycin and neomycin. Following local round window application, dose-dependent effects of AGs on outer hair cell survival and compound action potentials showed gentamicin C1a and apramycin as the least toxic. Strikingly, although no changes were observed in compound action potential thresholds and outer hair cell survival following treatment with low concentrations of neomycin, gentamicin and paromomycin, the number of inner hair cell synaptic ribbons and the compound action potential amplitudes were reduced. This indication of hidden hearing loss was not observed with gentamicin C1a or apramycin at such concentrations. These findings identify the inner hair cells as the most vulnerable element to AG treatment, indicating that gentamicin C1a and apramycin are promising bases for the development of clinically useful antibiotics.


Asunto(s)
Antibacterianos/efectos adversos , Gentamicinas/farmacología , Pérdida Auditiva/genética , Nebramicina/análogos & derivados , Ototoxicidad/metabolismo , Aminoglicósidos/efectos adversos , Aminoglicósidos/farmacología , Animales , Antiinfecciosos/efectos adversos , Antiinfecciosos/farmacología , Línea Celular , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Gentamicinas/efectos adversos , Gentamicinas/uso terapéutico , Cobayas , Células Ciliadas Auditivas Internas/efectos de los fármacos , Células Ciliadas Auditivas Internas/patología , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/patología , Humanos , Nebramicina/efectos adversos , Nebramicina/farmacología , Neomicina/efectos adversos , Neomicina/farmacología , Ototoxicidad/patología , Inhibidores de la Síntesis de la Proteína/efectos adversos , Inhibidores de la Síntesis de la Proteína/farmacología , Ventana Redonda/efectos de los fármacos , Ventana Redonda/patología
20.
Food Res Int ; 94: 45-53, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28290366

RESUMEN

Malabsorption of dietary sugars is a common cause of gastrointestinal discomfort, affecting up to one in three people with debilitating symptoms, such as abdominal pain, osmotic diarrhoea, bloating and flatulence. Besides dietary interventions, it has been suggested that ingestion of lactobacilli may alleviate these symptoms. The objectives of this study were to generate strains with improved potential to ameliorate sugar malabsorption related gastrointestinal disorders. Initial selection was made from 183 natural isolates of lactic acid bacteria, on the basis of broad sugar fermentation ability, absence of gas production, gastrointestinal survival and susceptibility to important medical antimicrobials. Two strains of L. plantarum (KR6 and M5) exhibited favourable characteristics for all criteria, and were further optimised through random mutagenesis and selection approaches. Ultraviolet light (UV) exposure resulted in mutants characterized by better survival (for 1.9 log and 1.4 log) in gastrointestinal conditions. Subsequent exposure to ethyl methanesulfonate (EMS) provided mutants with greater tolerance to glucose induced catabolic repression. UV and UV-EMS mutants of L. plantarum M5 showed improved adhesion ability. As a result of this optimisation, L. plantarum MP2026 and L. plantarum MP2420 have been identified as promising candidates for probiotics, intended for alleviation of gastrointestinal discomfort originating from sugar malabsorption.


Asunto(s)
Azúcares de la Dieta/metabolismo , Enfermedades Gastrointestinales/microbiología , Intestinos/microbiología , Lactobacillus plantarum , Síndromes de Malabsorción/complicaciones , Probióticos , Dolor Abdominal/etiología , Dolor Abdominal/microbiología , Dolor Abdominal/prevención & control , Adhesión Bacteriana , Metabolismo de los Hidratos de Carbono , Línea Celular , Fermentación , Flatulencia , Enfermedades Gastrointestinales/etiología , Enfermedades Gastrointestinales/prevención & control , Glucosa/metabolismo , Humanos , Absorción Intestinal , Intestinos/citología , Lactobacillus plantarum/genética , Lactobacillus plantarum/crecimiento & desarrollo , Lactobacillus plantarum/aislamiento & purificación , Mutagénesis , Mutación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA