Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Biol Chem ; 295(2): 444-457, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767682

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that suppress the expression of multiple genes and are involved in numerous biologic functions and disorders, including human diseases. Here, we report that two miRNAs, miR-302b and miR-372, target mitochondrial-mediated antiviral innate immunity by regulating mitochondrial dynamics and metabolic demand. Using human cell lines transfected with the synthetic analog of viral dsRNA, poly(I-C), or challenged with Sendai virus, we found that both miRNAs are up-regulated in the cells late after viral infection and ultimately terminate the production of type I interferons and inflammatory cytokines. We found that miR-302b and miR-372 are involved in dynamin-related protein 1 (DRP1)-dependent mitochondrial fragmentation and disrupt mitochondrial metabolism by attenuating solute carrier family 25 member 12 (SLC25A12), a member of the SLC25 family. Neutralizing the effects of the two miRNAs through specific inhibitors re-established the mitochondrial dynamics and the antiviral responses. We found that SLC25A12 contributes to regulating the antiviral response by inducing mitochondrial-related metabolite changes in the organelle. Structure-function analysis indicated that SLC25A12, as part of a prohibitin complex, associates with the mitochondrial antiviral-signaling protein in mitochondria, providing structural insight into the regulation of the mitochondrial-mediated antiviral response. Our results contribute to the understanding of how miRNAs modulate the innate immune response by altering mitochondrial dynamics and metabolic demand. Manipulating the activities of miR-302b and miR-372 may be a potential therapeutic approach to target RNA viruses.


Asunto(s)
MicroARNs/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Infecciones por Respirovirus/metabolismo , Virus Sendai/fisiología , Línea Celular , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , MicroARNs/inmunología , Mitocondrias/inmunología , Mitocondrias/virología , Proteínas de Transporte de Membrana Mitocondrial/inmunología , Membranas Mitocondriales/inmunología , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/virología , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/virología , Virus Sendai/inmunología
2.
J Virol ; 92(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30021900

RESUMEN

The nonstructural protein (NSs) of severe fever with thrombocytopenia syndrome phlebovirus (SFTSV) sequesters TANK-binding kinase 1 (TBK1) into NSs-induced cytoplasmic structures to inhibit the phosphorylation and nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3) and subsequent interferon beta (IFN-ß) production. Although the C-terminal region of SFTSV NSs (NSs66-249) has been linked to the formation of NSs-induced cytoplasmic structures and inhibition of host IFN-ß responses, the role of the N-terminal region in antagonizing host antiviral responses remains to be defined. Here, we demonstrate that two conserved amino acids at positions 21 and 23 in the SFTSV and heartland virus (HRTV) NSs are essential for suppression of IRF3 phosphorylation and IFN-ß mRNA expression following infection with SFTSV or recombinant influenza virus lacking the NS1 gene. Surprisingly, formation of SFTSV/HRTV NSs-induced cytoplasmic structures is not essential for inhibition of host antiviral responses. Rather, an association between SFTSV/HRTV NSs and TBK1 is required for suppression of mitochondrial antiviral signaling protein (MAVS)-mediated activation of IFN-ß promoter activity. Although SFTSV NSs did not prevent the ubiquitination of TBK1, it associates with TBK1 through its N-terminal kinase domain (residues 1 to 307) to block the autophosphorylation of TBK1. Furthermore, we found that both wild-type NSs and the 21/23A mutant (NSs in which residues at positions 21 and 23 were replaced with alanine) of SFTSV suppressed NLRP3 inflammasome-dependent interleukin-1ß (IL-1ß) secretion, suggesting that the importance of these residues is restricted to TBK1-dependent IFN signaling. Together, our findings strongly implicate the two conserved amino acids at positions 21 and 23 of SFTSV/HRTV NSs in the inhibition of host interferon responses.IMPORTANCE Recognition of viruses by host innate immune systems plays a critical role not only in providing resistance to viral infection but also in the initiation of antigen-specific adaptive immune responses against viruses. Severe fever with thrombocytopenia syndrome (SFTS) is a newly emerging infectious disease caused by the SFTS phlebovirus (SFTSV), a highly pathogenic tick-borne phlebovirus. The 294-amino-acid nonstructural protein (NSs) of SFTSV associates with TANK-binding kinase 1 (TBK1), a key regulator of host innate antiviral immunity, to inhibit interferon beta (IFN-ß) production and enhance viral replication. Here, we demonstrate that two conserved amino acids at positions 21 and 23 in the NSs of SFTSV and heartland virus, another tick-borne phlebovirus, are essential for association with TBK1 and suppression of IFN-ß production. Our results provide important insight into the molecular mechanisms by which SFTSV NSs helps to counteract host antiviral strategies.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Factor 3 Regulador del Interferón/inmunología , Interferón beta/inmunología , Phlebovirus/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas no Estructurales Virales/inmunología , Secuencia de Aminoácidos , Secuencia Conservada , Regulación de la Expresión Génica , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Factor 3 Regulador del Interferón/genética , Interferón beta/antagonistas & inhibidores , Interferón beta/genética , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Fiebre por Flebótomos/genética , Fiebre por Flebótomos/inmunología , Fiebre por Flebótomos/patología , Fiebre por Flebótomos/virología , Phlebovirus/patogenicidad , Fosforilación , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Alineación de Secuencia , Índice de Severidad de la Enfermedad , Transducción de Señal , Ubiquitinación , Proteínas no Estructurales Virales/genética , Virus no Clasificados/inmunología , Virus no Clasificados/patogenicidad
3.
PLoS Pathog ; 12(6): e1005670, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27249643

RESUMEN

[This corrects the article DOI: 10.1371/journal.ppat.1005244.].

4.
J Virol ; 90(8): 4105-4114, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26865721

RESUMEN

UNLABELLED: Inflammasomes are cytosolic multimolecular protein complexes that stimulate the activation of caspase-1 and the release of mature forms of interleukin-1ß (IL-1ß) and IL-18. We previously demonstrated that the influenza A virus M2 protein stimulates IL-1ß secretion following activation of the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. The nonstructural protein 1 (NS1) of influenza virus inhibits caspase-1 activation and IL-1ß secretion. However, the precise mechanism by which NS1 inhibits IL-1ß secretion remains unknown. Here, we showed that J774A.1 macrophages stably expressing the NS1 protein inhibited IL-1ß secretion after infection with recombinant influenza virus lacking the NS1 gene. Coimmunoprecipitation assay revealed that the NS1 protein interacts with NLRP3. Importantly, the NS1 protein inhibited the NLRP3/ASC-induced single-speck formation required for full activation of inflammasomes. The NS1 protein of other influenza virus strains, including a recent pandemic strain, also inhibited inflammasome-mediated IL-1ß secretion. The NS1 RNA-binding domain (basic residues 38 and 41) and TRIM25-binding domain (acidic residues 96 and 97) were required for suppression of NLRP3 inflammasome-mediated IL-1ß secretion. These results shed light on a mechanism by which the NS1 protein of influenza virus suppresses NLRP3 inflammasome-mediated IL-1ß secretion. IMPORTANCE: Innate immune sensing of influenza virus via pattern recognition receptors not only plays a key role in generating type I interferons but also triggers inflammatory responses. We previously demonstrated that the influenza A virus M2 protein activates the NLRP3 inflammasome, leading to the secretion of interleukin-1ß (IL-1ß) and IL-18 following the activation of caspase-1. Although the nonstructural protein 1 (NS1) of influenza virus inhibits IL-1ß secretion, the precise mechanism by which it achieves this remains to be defined. Here, we demonstrate that the NS1 protein interacts with NLRP3 to suppress NLRP3 inflammasome activation. J774A.1 macrophages stably expressing the NS1 protein suppressed NLRP3-mediated IL-1ß secretion. The NS1 RNA-binding domain (basic residues 38 and 41) and TRIM25-binding domain (acidic residues 96 and 97) are important for suppression of NLRP3 inflammasome-mediated IL-1ß secretion. These results will facilitate the development of new anti-inflammatory drugs.


Asunto(s)
Proteínas Portadoras/metabolismo , Inflamasomas/inmunología , Interleucina-1beta/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Sitios de Unión , Proteínas Portadoras/antagonistas & inhibidores , Células HEK293 , Células HeLa , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Membranas Mitocondriales/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , ARN/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/metabolismo
5.
PLoS Pathog ; 11(10): e1005244, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26506243

RESUMEN

Transglutaminase (TG) catalyzes protein-protein crosslinking, which has important and diverse roles in vertebrates and invertebrates. Here we demonstrate that Drosophila TG crosslinks drosocrystallin, a peritrophic matrix protein, to form a stable fiber structure on the gut peritrophic matrix. RNA interference (RNAi) of the TG gene was highly lethal in flies and induced apoptosis of gut epithelial cells after oral infection with Pseudomonas entomophila. Moreover, AprA, a metalloprotease secreted by P. entomophila, digested non-crosslinked drosocrystallin fibers, but not drosocrystallin fibers crosslinked by TG. In vitro experiments using recombinant drosocrystallin and monalysin proteins demonstrated that monalysin, a pore-forming exotoxin of P. entomophila, was adsorbed on the crosslinked drosocrystallin fibers in the presence of P. entomophila culture supernatant. In addition, gut-specific TG-RNAi flies had a shorter lifespan than control flies after ingesting P. entomophila, whereas the lifespan after ingesting AprA-knockout P. entomophila was at control levels. We conclude that drosocrystallin fibers crosslinked by TG, but not non-crosslinked drosocrystallin fibers, form an important physical barrier against exotoxins of invading pathogenic microbes.


Asunto(s)
Toxinas Bacterianas/toxicidad , Proteínas de Drosophila/fisiología , Proteínas del Ojo/fisiología , Mucosa Intestinal/microbiología , Animales , Calcio/metabolismo , Drosophila , Proteínas de Drosophila/química , Proteínas del Ojo/química , Pseudomonas/patogenicidad , Transglutaminasas/fisiología
6.
Proc Natl Acad Sci U S A ; 111(35): E3631-40, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136135

RESUMEN

Defective mitochondrial distribution in neurons is proposed to cause ATP depletion and calcium-buffering deficiencies that compromise cell function. However, it is unclear whether aberrant mitochondrial motility and distribution alone are sufficient to cause neurological disease. Calcium-binding mitochondrial Rho (Miro) GTPases attach mitochondria to motor proteins for anterograde and retrograde transport in neurons. Using two new KO mouse models, we demonstrate that Miro1 is essential for development of cranial motor nuclei required for respiratory control and maintenance of upper motor neurons required for ambulation. Neuron-specific loss of Miro1 causes depletion of mitochondria from corticospinal tract axons and progressive neurological deficits mirroring human upper motor neuron disease. Although Miro1-deficient neurons exhibit defects in retrograde axonal mitochondrial transport, mitochondrial respiratory function continues. Moreover, Miro1 is not essential for calcium-mediated inhibition of mitochondrial movement or mitochondrial calcium buffering. Our findings indicate that defects in mitochondrial motility and distribution are sufficient to cause neurological disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Paraplejía/genética , Proteínas de Unión al GTP rho/genética , Adenosina Trifosfato/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Transporte Axonal/fisiología , Calcio/metabolismo , Respiración de la Célula/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Microtúbulos/metabolismo , Neuronas Motoras/metabolismo , Paraplejía/metabolismo , Paraplejía/patología , Fenotipo , Proteínas de Unión al GTP rho/metabolismo
7.
J Biol Chem ; 290(31): 19379-86, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26109069

RESUMEN

Factor B is a serine-protease zymogen in the horseshoe crab coagulation cascade, and it is the primary substrate for activated factor C, the LPS-responsive initiator of the cascade. Factor C is autocatalytically activated to α-factor C on LPS and is artificially converted to ß-factor C, another activated form, by chymotrypsin. It is not known, however, whether LPS is required for the activation of factor B. Here we found that wild-type factor B expressed in HEK293S cells is activated by α-factor C, but not by ß-factor C, in an LPS-dependent manner and that ß-factor C loses the LPS binding activity of factor C through additional cleavage by chymotrypsin within the N-terminal LPS-binding region. Surface plasmon resonance and quartz crystal microbalance analyses revealed that wild-type factor B binds to LPS with high affinity comparable with that of factor C, demonstrating that factor B is the second LPS-binding zymogen in the cascade. An LPS-binding site of wild-type factor B was found in the N-terminal clip domain, and the activation rate of a clip domain deletion mutant was considerably slower than that of wild-type factor B. Moreover, in the presence of LPS, Triton X-100 inhibited the activation of wild-type factor B by α-factor C. We conclude that the clip domain of factor B has an important role in localizing factor B to the surface of Gram-negative bacteria or LPS released from bacteria to initiate effective proteolytic activation by α-factor C.


Asunto(s)
Proteínas de Artrópodos/química , Factor B del Complemento/química , Precursores Enzimáticos/química , Cangrejos Herradura/enzimología , Lipopolisacáridos/química , Animales , Sitios de Unión , Células HEK293 , Humanos , Unión Proteica , Proteolisis
8.
Proc Natl Acad Sci U S A ; 110(44): 17963-8, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24127597

RESUMEN

Nod-like receptor family, pyrin domain-containing 3 (NLRP3), is involved in the early stages of the inflammatory response by sensing cellular damage or distress due to viral or bacterial infection. Activation of NLRP3 triggers its assembly into a multimolecular protein complex, termed "NLRP3 inflammasome." This event leads to the activation of the downstream molecule caspase-1 that cleaves the precursor forms of proinflammatory cytokines, such as interleukin 1 beta (IL-1ß) and IL-18, and initiates the immune response. Recent studies indicate that the reactive oxygen species produced by mitochondrial respiration is critical for the activation of the NLRP3 inflammasome by monosodium urate, alum, and ATP. However, the precise mechanism by which RNA viruses activate the NLRP3 inflammasome is not well understood. Here, we show that loss of mitochondrial membrane potential [ΔΨ(m)] dramatically reduced IL-1ß secretion after infection with influenza, measles, or encephalomyocarditis virus (EMCV). Reduced IL-1ß secretion was also observed following overexpression of the mitochondrial inner membrane protein, uncoupling protein-2, which induces mitochondrial proton leakage and dissipates ΔΨ(m). ΔΨ(m) was required for association between the NLRP3 and mitofusin 2, a mediator of mitochondrial fusion, after infection with influenza virus or EMCV. Importantly, the knockdown of mitofusin 2 significantly reduced the secretion of IL-1ß after infection with influenza virus or EMCV. Our results provide insight into the roles of mitochondria in NLRP3 inflammasome activation.


Asunto(s)
Proteínas Portadoras/inmunología , GTP Fosfohidrolasas/inmunología , Inflamasomas/inmunología , Infecciones por Virus ARN/inmunología , Análisis de Varianza , Animales , Interleucina-1beta/inmunología , Canales Iónicos/metabolismo , Potencial de la Membrana Mitocondrial/inmunología , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Especies Reactivas de Oxígeno/metabolismo , Proteína Desacopladora 2
9.
Fukuoka Igaku Zasshi ; 107(8): 148-54, 2016 08.
Artículo en Japonés | MEDLINE | ID: mdl-29227063

RESUMEN

Recent advances reveal that mitochondria are not limited to functioning only as the cellular powerhouse and in apoptosis, but that they act as central hubs for multiple signal transductions. Studies over the last decade indicate that mitochondria in vertebrates are involved in the front line of host defense, especially against RNA viruses. Mitochondrial-mediated antiviral innate immunity depends on activation of the retinoic acid-inducible gene I (RIG-I)-like receptors signal transduction pathway, and the mitochondrial surface acts as a platform for the assembly of signaling molecules, including mitochondrial antiviral signaling (MAVS) during the process. Some viral encoded proteins target to the mitochondria post-infection, however, thereby evading the cellular immune response. Here we review specific interactions between mitochondria and viral proteins and discuss their physiologic effects on the host cells.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Virales/metabolismo , Humanos , Unión Proteica , Procesamiento Proteico-Postraduccional , Transducción de Señal
10.
J Biol Chem ; 289(37): 25987-95, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25077965

RESUMEN

Factor C, a serine protease zymogen involved in innate immune responses in horseshoe crabs, is known to be autocatalytically activated on the surface of bacterial lipopolysaccharides, but the molecular mechanism of this activation remains unknown. In this study, we show that wild-type factor C expressed in HEK293S cells exhibits a lipopolysaccharide-induced activity equivalent to that of native factor C. Analysis of the N-terminal addition, deletion, or substitution mutants shows that the N-terminal Arg residue and the distance between the N terminus and the tripartite of lipopolysaccharide-binding site are essential factors for autocatalytic activation, and that the positive charge of the N terminus may interact with an acidic amino acid(s) of the molecule to convert the zymogen into an active form. Chemical cross-linking experiments indicate that the N terminus is required to form a complex of the factor C molecules in a sufficiently close vicinity to be chemically cross-linked on the surface of lipopolysaccharides. We propose a molecular mechanism of the autocatalytic activation of the protease zymogen on lipopolysaccharides functioning as a platform to induce specific protein-protein interaction between the factor C molecules.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Cangrejos Herradura/enzimología , Inmunidad Innata/genética , Serina Proteasas/genética , Serina Proteasas/metabolismo , Secuencia de Aminoácidos , Animales , Precursores Enzimáticos/biosíntesis , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Lipopolisacáridos/toxicidad , Serina Proteasas/biosíntesis
11.
J Cell Sci ; 126(Pt 1): 176-85, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23077178

RESUMEN

In yeast, C-tail-anchored mitochondrial outer membrane protein Fis1 recruits the mitochondrial-fission-regulating GTPase Dnm1 to mitochondrial fission sites. However, the function of its mammalian homologue remains enigmatic because it has been reported to be dispensable for the mitochondrial recruitment of Drp1, a mammalian homologue of Dnm1. We identified TBC1D15 as a Fis1-binding protein in HeLa cell extracts. Immunoprecipitation revealed that Fis1 efficiently interacts with TBC1D15 but not with Drp1. Bacterially expressed Fis1 and TBC1D15 formed a direct and stable complex. Exogenously expressed TBC1D15 localized mainly in cytoplasm in HeLa cells, but when coexpressed with Fis1 it localized to mitochondria. Knockdown of TBC1D15 induced highly developed mitochondrial network structures similar to the effect of Fis1 knockdown, suggesting that the TBC1D15 and Fis1 are associated with the regulation of mitochondrial morphology independently of Drp1. These data suggest that Fis1 acts as a mitochondrial receptor in the recruitment of mitochondrial morphology protein in mammalian cells.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Activadoras de GTPasa/genética , Células HeLa , Humanos , Inmunoprecipitación , Proteínas de la Membrana/genética , Microscopía Fluorescente , Proteínas Mitocondriales/genética , Unión Proteica/genética , Unión Proteica/fisiología , Interferencia de ARN
12.
Biochim Biophys Acta ; 1833(1): 225-32, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22440325

RESUMEN

Mitochondria, cellular powerhouses of eukaryotes, are known to act as central hubs for multiple signal transductions. Recent research reveals that mitochondria are involved in cellular innate antiviral immunity in vertebrates, particularly mammals. Mitochondrial-mediated antiviral immunity depends on the activation of the retinoic acid-inducible gene I (RIG-I)-like receptors signal transduction pathway and on the participation of a mitochondrial outer membrane adaptor protein, called the "mitochondrial antiviral signaling (MAVS)". In this review, we discuss unexpected discoveries that are revealing how the organelles contribute to the innate immune response against RNA viruses. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.


Asunto(s)
Antivirales/metabolismo , Inmunidad Innata/fisiología , Mitocondrias/inmunología , Virus ARN/inmunología , Secuencia de Aminoácidos , Animales , Antivirales/química , Humanos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
13.
Biochim Biophys Acta ; 1833(5): 1017-27, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23337771

RESUMEN

In most eukaryotic cells, mitochondria have various essential roles for proper cell function, such as energy production, and in mammals mitochondria also act as a platform for antiviral innate immunity. Mitochondrial-mediated antiviral immunity depends on the activation of the cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathway, and on the participation of mitochondrial antiviral signaling (MAVS), which is localized on the mitochondrial outer membrane. After RNA virus infection, RLRs translocate to the mitochondrial surface to interact with MAVS, and the adaptor protein undergoes a conformational change that is essential for downstream signaling, although its structural features are poorly understood. Here we examined the MAVS-regulatory mechanism on the mitochondrial outer membrane using bioluminescence resonance energy transfer (BRET) in live cells. Using a combination of BRET and functional analysis, we found that the activated MAVS conformation is a highly ordered oligomer, at least more than three molecules per complex unit on the membrane. Hepatitis C virus NS3/4A protease and mitofusin 2, which are known MAVS inhibitors, interfere with MAVS homotypic oligomerization in a distinct manner, each differentially altering the active conformation of MAVS. Our results reveal structural features underlying the precise regulation of MAVS signaling on the mitochondrial outer membrane, and may provide insight into other signaling systems involving organelles.


Asunto(s)
ARN Helicasas DEAD-box , Inmunidad Innata , Mitocondrias , Membranas Mitocondriales/metabolismo , Animales , Transferencia de Energía por Resonancia de Bioluminiscencia , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Metabolismo Energético , Células HEK293 , Humanos , Inmunidad Innata/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/metabolismo , Receptores Inmunológicos , Transducción de Señal , Proteínas no Estructurales Virales/metabolismo
14.
FEBS Lett ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639871

RESUMEN

Reactive oxygen species (ROS) are associated with oocyte maturation inhibition, and N-acetyl-l-cysteine (NAC) partially reduces their harmful effects. Mitochondrial E3 ubiquitin ligase 1 (Mul1) localizes to the mitochondrial outer membrane. We found that female Mul1-deficient mice are infertile, and their oocytes contain high ROS concentrations. After fertilization, Mul1-deficient embryos showed a DNA damage response (DDR) and abnormal preimplantation embryogenesis, which was rescued by NAC addition and ROS depletion. These observations clearly demonstrate that loss of Mul1 in oocytes increases ROS concentrations and triggers DDR, resulting in abnormal preimplantation embryogenesis. We conclude that manipulating the mitochondrial ROS levels in oocytes may be a potential therapeutic approach to target infertility.

15.
J Biol Chem ; 286(1): 354-62, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21036903

RESUMEN

Mitochondria undergo continuous cycles of homotypic fusion and fission, which play an important role in controlling organelle morphology, copy number, and mitochondrial DNA maintenance. Because mitochondria cannot be generated de novo, the motility and distribution of these organelles are essential for their inheritance by daughter cells during division. Mitochondrial Rho (Miro) GTPases are outer mitochondrial membrane proteins with two GTPase domains and two EF-hand motifs, which act as receptors to regulate mitochondrial motility and inheritance. Here we report that although all of these domains are biochemically active, only the GTPase domains are required for the mitochondrial inheritance function of Gem1p (the yeast Miro ortholog). Mutations in either of the Gem1p GTPase domains completely abrogated mitochondrial inheritance, although the mutant proteins retained half the GTPase activity of the wild-type protein. Although mitochondrial inheritance was not dependent upon Ca(2+) binding by the two EF-hands of Gem1p, a functional N-terminal EF-hand I motif was critical for stable expression of Gem1p in vivo. Our results suggest that basic features of Miro protein function are conserved from yeast to humans, despite differences in the cellular machinery mediating mitochondrial distribution in these organisms.


Asunto(s)
Genes Mitocondriales , Mitocondrias/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Hidrólisis , Mitocondrias/metabolismo , Mutación , Nucleótidos/metabolismo , Estabilidad Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Proteínas de Unión al GTP rho/genética
16.
J Immunol ; 183(6): 3810-8, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19710471

RESUMEN

In the horseshoe crab, the recognition of beta-1,3-D-glucans by factor G triggers hemolymph coagulation. Factor G contains a domain of two tandem xylanase Z-like modules (Z1-Z2), each of which recognizes beta-1,3-D-glucans. To gain an insight into the recognition of beta-1,3-D-glucans from a structural view point, recombinants of Z1-Z2, the C-terminal module Z2, Z2 with a Cys to Ala substitution (Z2A), and its tandem repeat Z2A-Z2A were characterized. Z2 and Z1-Z2, but not Z2A and Z2A-Z2A, formed insoluble aggregates at higher concentrations more than approximately 30 and 3 microM, respectively. Z1-Z2 and Z2A-Z2A bound more strongly to an insoluble beta-1,3-D-glucan (curdlan) than Z2A. The affinity of Z2A for a soluble beta-1,3-D-glucan (laminarin) was equivalent to those of Z1-Z2, Z2A-Z2A, and native factor G, suggesting that the binding of a single xylanase Z-like module prevents the subsequent binding of another module to laminarin. Interestingly, Z2A as well as intact factor G exhibited fungal agglutinating activity, and fungi were specifically detected with fluorescently tagged Z2A by microscopy. The chemical shift perturbation of Z2A induced by the interaction with laminaripentaose was analyzed by nuclear magnetic resonance spectroscopy. The ligand-binding site of Z2A was located in a cleft on a beta-sheet in a predicted beta-sandwich structure, which was superimposed onto cleft B in a cellulose-binding module of endoglucanase 5A from the soil bacterium Cellvibrio mixtus. We conclude that the pattern recognition for beta-1,3-D-glucans by factor G is accomplished via a carbohydrate-binding cleft that is evolutionally conserved between horseshoe crab and bacteria.


Asunto(s)
Cellvibrio/química , Evolución Molecular , Cangrejos Herradura/química , Lectinas/genética , beta-Glucanos/metabolismo , Animales , Sitios de Unión , Celulasa/química , Cellvibrio/enzimología , Secuencia Conservada , Endo-1,4-beta Xilanasas , Glucanos , Polisacáridos/metabolismo , Proteoglicanos
17.
Biochim Biophys Acta Gen Subj ; 1865(3): 129839, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33412226

RESUMEN

Mitochondria are multi-functioning organelles that participate in a wide range of biologic processes from energy metabolism to cellular suicide. Mitochondria are also involved in the cellular innate immune response against microorganisms or environmental irritants, particularly in mammals. Mitochondrial-mediated innate immunity is achieved by the activation of two discrete signaling pathways, the NLR family pyrin domain-containing 3 inflammasomes and the retinoic acid-inducible gene I-like receptor pathway. In both pathways, a mitochondrial outer membrane adaptor protein, called mitochondrial antiviral signaling MAVS, and mitochondria-derived components play a key role in signal transduction. In this review, we discuss current insights regarding the fundamental phenomena of mitochondrial-related innate immune responses, and review the specific roles of various mitochondrial subcompartments in fine-tuning innate immune signaling events. We propose that specific targeting of mitochondrial functions is a potential therapeutic approach for the management of infectious diseases and autoinflammatory disorders with an excessive immune response.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Mitocondrias/inmunología , Infecciones por Virus ARN/inmunología , Virus ARN/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/inmunología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Inflamasomas , MicroARNs/genética , MicroARNs/inmunología , Mitocondrias/genética , Mitocondrias/virología , Membranas Mitocondriales/inmunología , Membranas Mitocondriales/virología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/patología , Infecciones por Virus ARN/virología , Virus ARN/genética , Virus ARN/patogenicidad , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Transducción de Señal
18.
J Immunol ; 181(11): 7994-8001, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19017991

RESUMEN

The complement system in vertebrates plays an important role in host defense against and clearance of invading microbes, in which complement component C3 plays an essential role in the opsonization of pathogens, whereas the molecular mechanism underlying C3 activation in invertebrates remains unknown. In an effort to understand the molecular activation mechanism of invertebrate C3, we isolated and characterized an ortholog of C3 (designated TtC3) from the horseshoe crab Tachypleus tridentatus. Flow cytometric analysis using an Ab against TtC3 revealed that the horseshoe crab complement system opsonizes both Gram-negative and Gram-positive bacteria. Evaluation of the ability of various pathogen-associated molecular patterns to promote the proteolytic conversion of TtC3 to TtC3b in hemocyanin-depleted plasma indicated that LPS, but not zymosan, peptidoglycan, or laminarin, strongly induces this conversion, highlighting the selective response of the complement system to LPS stimulation. Although originally characterized as an LPS-sensitive initiator of hemolymph coagulation stored within hemocytes, we identified factor C in hemolymph plasma. An anti-factor C Ab inhibited various LPS-induced phenomena, including plasma amidase activity, the proteolytic activation of TtC3, and the deposition of TtC3b on the surface of Gram-negative bacteria. Moreover, activated factor C present on the surface of Gram-negative bacteria directly catalyzed the proteolytic conversion of the purified TtC3, thereby promoting TtC3b deposition. We conclude that factor C acts as an LPS-responsive C3 convertase on the surface of invading Gram-negative bacteria in the initial phase of horseshoe crab complement activation.


Asunto(s)
Activación de Complemento/efectos de los fármacos , Convertasas de Complemento C3-C5/inmunología , Precursores Enzimáticos/inmunología , Cangrejos Herradura/inmunología , Lipopolisacáridos/farmacología , Serina Endopeptidasas/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos , Activación de Complemento/genética , Activación de Complemento/inmunología , Convertasas de Complemento C3-C5/genética , Convertasas de Complemento C3-C5/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Bacterias Gramnegativas/inmunología , Bacterias Grampositivas/inmunología , Hemocitos/enzimología , Hemocitos/inmunología , Hemolinfa/enzimología , Hemolinfa/inmunología , Cangrejos Herradura/enzimología , Cangrejos Herradura/genética , Datos de Secuencia Molecular , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Especificidad por Sustrato/genética , Especificidad por Sustrato/inmunología
20.
J Biochem ; 167(3): 225-231, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31647556

RESUMEN

Protein-protein interactions are essential biologic processes that occur at inter- and intracellular levels. To gain insight into the various complex cellular functions of these interactions, it is necessary to assess them under physiologic conditions. Recent advances in various proteomic technologies allow to investigate protein-protein interaction networks in living cells. The combination of proximity-dependent labelling and chemical cross-linking will greatly enhance our understanding of multi-protein complexes that are difficult to prepare, such as organelle-bound membrane proteins. In this review, we describe our current understanding of mass spectrometry-based proteomics mapping methods for elucidating organelle-bound membrane protein complexes in living cells, with a focus on protein-protein interactions in mitochondrial subcellular compartments.


Asunto(s)
Espectrometría de Masas/métodos , Mitocondrias/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteómica/métodos , Reactivos de Enlaces Cruzados/química , Humanos , Proteínas de la Membrana/metabolismo , Orgánulos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA