Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Nat Immunol ; 20(8): 992-1003, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31263279

RESUMEN

Here we identify a group 2 innate lymphoid cell (ILC2) subpopulation that can convert into interleukin-17 (IL-17)-producing NKp44- ILC3-like cells. c-Kit and CCR6 define this ILC2 subpopulation that exhibits ILC3 features, including RORγt, enabling the conversion into IL-17-producing cells in response to IL-1ß and IL-23. We also report a role for transforming growth factor-ß in promoting the conversion of c-Kit- ILC2s into RORγt-expressing cells by inducing the upregulation of IL23R, CCR6 and KIT messenger RNA in these cells. This switch was dependent on RORγt and the downregulation of GATA-3. IL-4 was able to reverse this event, supporting a role for this cytokine in maintaining ILC2 identity. Notably, this plasticity has physiological relevance because a subset of RORγt+ ILC2s express the skin-homing receptor CCR10, and the frequencies of IL-17-producing ILC3s are increased at the expense of ILC2s within the lesional skin of patients with psoriasis.


Asunto(s)
Interleucina-17/inmunología , Linfocitos/inmunología , Psoriasis/patología , Piel/patología , Células Cultivadas , Humanos , Interleucina-1beta/inmunología , Subunidad p19 de la Interleucina-23/inmunología , Interleucina-4/inmunología , Linfocitos/citología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Psoriasis/inmunología , Receptores CCR10/metabolismo , Piel/inmunología , Factor de Crecimiento Transformador beta/metabolismo
3.
Cell ; 161(4): 933-45, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25957691

RESUMEN

In Rspondin-based 3D cultures, Lgr5 stem cells from multiple organs form ever-expanding epithelial organoids that retain their tissue identity. We report the establishment of tumor organoid cultures from 20 consecutive colorectal carcinoma (CRC) patients. For most, organoids were also generated from adjacent normal tissue. Organoids closely recapitulate several properties of the original tumor. The spectrum of genetic changes within the "living biobank" agrees well with previous large-scale mutational analyses of CRC. Gene expression analysis indicates that the major CRC molecular subtypes are represented. Tumor organoids are amenable to high-throughput drug screens allowing detection of gene-drug associations. As an example, a single organoid culture was exquisitely sensitive to Wnt secretion (porcupine) inhibitors and carried a mutation in the negative Wnt feedback regulator RNF43, rather than in APC. Organoid technology may fill the gap between cancer genetics and patient trials, complement cell-line- and xenograft-based drug studies, and allow personalized therapy design. PAPERCLIP.


Asunto(s)
Bancos de Muestras Biológicas , Neoplasias Colorrectales/patología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Organoides , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Oncogénicas/metabolismo , Técnicas de Cultivo de Órganos , Organoides/efectos de los fármacos , Medicina de Precisión , Ubiquitina-Proteína Ligasas
4.
Cell ; 155(2): 357-68, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120136

RESUMEN

Proliferation of the self-renewing epithelium of the gastric corpus occurs almost exclusively in the isthmus of the glands, from where cells migrate bidirectionally toward pit and base. The isthmus is therefore generally viewed as the stem cell zone. We find that the stem cell marker Troy is expressed at the gland base by a small subpopulation of fully differentiated chief cells. By lineage tracing with a Troy-eGFP-ires-CreERT2 allele, single marked chief cells are shown to generate entirely labeled gastric units over periods of months. This phenomenon accelerates upon tissue damage. Troy(+) chief cells can be cultured to generate long-lived gastric organoids. Troy marks a specific subset of chief cells that display plasticity in that they are capable of replenishing entire gastric units, essentially serving as quiescent "reserve" stem cells. These observations challenge the notion that stem cell hierarchies represent a "one-way street."


Asunto(s)
Células Principales Gástricas/citología , Células Madre/citología , Estómago/citología , Animales , Linaje de la Célula , Células Principales Gástricas/química , Mucosa Gástrica/citología , Ratones , Organoides/citología , Receptores del Factor de Necrosis Tumoral/análisis , Vía de Señalización Wnt
5.
Cell ; 155(3): 567-81, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24139898

RESUMEN

Mutation is a fundamental process in tumorigenesis. However, the degree to which the rate of somatic mutation varies across the human genome and the mechanistic basis underlying this variation remain to be fully elucidated. Here, we performed a cross-cancer comparison of 402 whole genomes comprising a diverse set of childhood and adult tumors, including both solid and hematopoietic malignancies. Surprisingly, we found that the inactive X chromosome of many female cancer genomes accumulates on average twice and up to four times as many somatic mutations per megabase, as compared to the individual autosomes. Whole-genome sequencing of clonally expanded hematopoietic stem/progenitor cells (HSPCs) from healthy individuals and a premalignant myelodysplastic syndrome (MDS) sample revealed no X chromosome hypermutation. Our data suggest that hypermutation of the inactive X chromosome is an early and frequent feature of tumorigenesis resulting from DNA replication stress in aberrantly proliferating cells.


Asunto(s)
Cromosomas Humanos X , Mutación , Neoplasias/genética , Inactivación del Cromosoma X , Adulto , Anciano , Replicación del ADN , Femenino , Humanos , Masculino , Meduloblastoma/genética , Meduloblastoma/patología , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Polimorfismo de Nucleótido Simple , Fase S
6.
Cell ; 148(1-2): 59-71, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265402

RESUMEN

Genomic rearrangements are thought to occur progressively during tumor development. Recent findings, however, suggest an alternative mechanism, involving massive chromosome rearrangements in a one-step catastrophic event termed chromothripsis. We report the whole-genome sequencing-based analysis of a Sonic-Hedgehog medulloblastoma (SHH-MB) brain tumor from a patient with a germline TP53 mutation (Li-Fraumeni syndrome), uncovering massive, complex chromosome rearrangements. Integrating TP53 status with microarray and deep sequencing-based DNA rearrangement data in additional patients reveals a striking association between TP53 mutation and chromothripsis in SHH-MBs. Analysis of additional tumor entities substantiates a link between TP53 mutation and chromothripsis, and indicates a context-specific role for p53 in catastrophic DNA rearrangements. Among these, we observed a strong association between somatic TP53 mutations and chromothripsis in acute myeloid leukemia. These findings connect p53 status and chromothripsis in specific tumor types, providing a genetic basis for understanding particularly aggressive subtypes of cancer.


Asunto(s)
Neoplasias Encefálicas/genética , Reordenamiento Génico , Meduloblastoma/genética , Proteína p53 Supresora de Tumor/genética , Animales , Niño , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Humanos , Leucemia Mieloide Aguda/genética , Síndrome de Li-Fraumeni/fisiopatología , Ratones , Persona de Mediana Edad
7.
Nature ; 594(7863): 436-441, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079128

RESUMEN

A delicate equilibrium of WNT agonists and antagonists in the intestinal stem cell (ISC) niche is critical to maintaining the ISC compartment, as it accommodates the rapid renewal of the gut lining. Disruption of this balance by mutations in the tumour suppressor gene APC, which are found in approximately 80% of all human colon cancers, leads to unrestrained activation of the WNT pathway1,2. It has previously been established that Apc-mutant cells have a competitive advantage over wild-type ISCs3. Consequently, Apc-mutant ISCs frequently outcompete all wild-type stem cells within a crypt, thereby reaching clonal fixation in the tissue and initiating cancer formation. However, whether the increased relative fitness of Apc-mutant ISCs involves only cell-intrinsic features or whether Apc mutants are actively involved in the elimination of their wild-type neighbours remains unresolved. Here we show that Apc-mutant ISCs function as bona fide supercompetitors by secreting WNT antagonists, thereby inducing differentiation of neighbouring wild-type ISCs. Lithium chloride prevented the expansion of Apc-mutant clones and the formation of adenomas by rendering wild-type ISCs insensitive to WNT antagonists through downstream activation of WNT by inhibition of GSK3ß. Our work suggests that boosting the fitness of healthy cells to limit the expansion of pre-malignant clones may be a powerful strategy to limit the formation of cancers in high-risk individuals.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Competencia Celular , Genes APC , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Mutación , Adenoma/genética , Adenoma/metabolismo , Adenoma/patología , Proteína de la Poliposis Adenomatosa del Colon/deficiencia , Animales , Diferenciación Celular/genética , Femenino , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Humanos , Neoplasias Intestinales/metabolismo , Cloruro de Litio/farmacología , Masculino , Ratones , Organoides/citología , Organoides/metabolismo , Organoides/patología , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/metabolismo
8.
EMBO J ; 40(3): e105784, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33411331

RESUMEN

High-risk neuroblastoma (NB) is responsible for a disproportionate number of childhood deaths due to cancer. One indicator of high-risk NB is amplification of the neural MYC (MYCN) oncogene, which is currently therapeutically intractable. Identification of anaplastic lymphoma kinase (ALK) as an NB oncogene raised the possibility of using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients with activating ALK mutations. 8-10% of primary NB patients are ALK-positive, a figure that increases in the relapsed population. ALK is activated by the ALKAL2 ligand located on chromosome 2p, along with ALK and MYCN, in the "2p-gain" region associated with NB. Dysregulation of ALK ligand in NB has not been addressed, although one of the first oncogenes described was v-sis that shares > 90% homology with PDGF. Therefore, we tested whether ALKAL2 ligand could potentiate NB progression in the absence of ALK mutation. We show that ALKAL2 overexpression in mice drives ALK TKI-sensitive NB in the absence of ALK mutation, suggesting that additional NB patients, such as those exhibiting 2p-gain, may benefit from ALK TKI-based therapeutic intervention.


Asunto(s)
Citocinas/genética , Citocinas/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Regulación hacia Arriba , Quinasa de Linfoma Anaplásico/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Mutación con Ganancia de Función , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Análisis de Secuencia de ARN , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cell ; 142(2): 218-29, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20655465

RESUMEN

Retinoic acid (RA) induces differentiation of neuroblastoma cells in vitro and is used with variable success to treat aggressive forms of this disease. This variability in clinical response to RA is enigmatic, as no mutations in components of the RA signaling cascade have been found. Using a large-scale RNAi genetic screen, we identify crosstalk between the tumor suppressor NF1 and retinoic acid-induced differentiation in neuroblastoma. Loss of NF1 activates RAS-MEK signaling, which in turn represses ZNF423, a critical transcriptional coactivator of the retinoic acid receptors. Neuroblastomas with low levels of both NF1 and ZNF423 have extremely poor outcome. We find NF1 mutations in neuroblastoma cell lines and in primary tumors. Inhibition of MEK signaling downstream of NF1 restores responsiveness to RA, suggesting a therapeutic strategy to overcome RA resistance in NF1-deficient neuroblastomas.


Asunto(s)
Neuroblastoma/diagnóstico , Neurofibromina 1/metabolismo , Tretinoina/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Humanos , Neuroblastoma/metabolismo , Neurofibromina 1/genética , Pronóstico , Proteínas , Transducción de Señal , Activación Transcripcional
10.
Nature ; 567(7749): 545-549, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30894746

RESUMEN

MYC is an oncogenic transcription factor that binds globally to active promoters and promotes transcriptional elongation by RNA polymerase II (RNAPII)1,2. Deregulated expression of the paralogous protein MYCN drives the development of neuronal and neuroendocrine tumours and is often associated with a particularly poor prognosis3. Here we show that, similar to MYC, activation of MYCN in human neuroblastoma cells induces escape of RNAPII from promoters. If the release of RNAPII from transcriptional pause sites (pause release) fails, MYCN recruits BRCA1 to promoter-proximal regions. Recruitment of BRCA1 prevents MYCN-dependent accumulation of stalled RNAPII and enhances transcriptional activation by MYCN. Mechanistically, BRCA1 stabilizes mRNA decapping complexes and enables MYCN to suppress R-loop formation in promoter-proximal regions. Recruitment of BRCA1 requires the ubiquitin-specific protease USP11, which binds specifically to MYCN when MYCN is dephosphorylated at Thr58. USP11, BRCA1 and MYCN stabilize each other on chromatin, preventing proteasomal turnover of MYCN. Because BRCA1 is highly expressed in neuronal progenitor cells during early development4 and MYC is less efficient than MYCN in recruiting BRCA1, our findings indicate that a cell-lineage-specific stress response enables MYCN-driven tumours to cope with deregulated RNAPII function.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Estabilidad Proteica , Tioléster Hidrolasas/metabolismo
11.
Nature ; 576(7786): 274-280, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31802000

RESUMEN

Embryonal tumours with multilayered rosettes (ETMRs) are aggressive paediatric embryonal brain tumours with a universally poor prognosis1. Here we collected 193 primary ETMRs and 23 matched relapse samples to investigate the genomic landscape of this distinct tumour type. We found that patients with tumours in which the proposed driver C19MC2-4 was not amplified frequently had germline mutations in DICER1 or other microRNA-related aberrations such as somatic amplification of miR-17-92 (also known as MIR17HG). Whole-genome sequencing revealed that tumours had an overall low recurrence of single-nucleotide variants (SNVs), but showed prevalent genomic instability caused by widespread occurrence of R-loop structures. We show that R-loop-associated chromosomal instability can be induced by the loss of DICER1 function. Comparison of primary tumours and matched relapse samples showed a strong conservation of structural variants, but low conservation of SNVs. Moreover, many newly acquired SNVs are associated with a mutational signature related to cisplatin treatment. Finally, we show that targeting R-loops with topoisomerase and PARP inhibitors might be an effective treatment strategy for this deadly disease.


Asunto(s)
MicroARNs/genética , Neoplasias de Células Germinales y Embrionarias/genética , ARN Helicasas DEAD-box/genética , ADN-Topoisomerasas de Tipo I/genética , Humanos , Mutación , Neoplasias de Células Germinales y Embrionarias/diagnóstico , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/genética , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante , Recurrencia , Ribonucleasa III/genética
12.
Bioessays ; 45(1): e2200112, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36300921

RESUMEN

Cancers often express hundreds of genes otherwise specific to germ cells, the germline/cancer (GC) genes. Here, we present and discuss the hypothesis that activation of a "germline program" promotes cancer cell malignancy. We do so by proposing four hallmark processes of the germline: meiosis, epigenetic plasticity, migration, and metabolic plasticity. Together, these hallmarks enable replicative immortality of germ cells as well as cancer cells. Especially meiotic genes are frequently expressed in cancer, implying that genes unique to meiosis may play a role in oncogenesis. Because GC genes are not expressed in healthy somatic tissues, they form an appealing source of specific treatment targets with limited side effects besides infertility. Although it is still unclear why germ cell specific genes are so abundantly expressed in cancer, from our hypothesis it follows that the germline's reproductive program is intrinsic to cancer development.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Células Germinativas , Carcinogénesis/metabolismo , Meiosis , Reproducción
13.
Acta Neuropathol ; 147(1): 95, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847845

RESUMEN

The non-WNT/non-SHH (Grp3/Grp4) medulloblastomas (MBs) include eight second-generation subgroups (SGS; I-VIII) each with distinct molecular and clinical characteristics. Recently, we also identified two prognostically relevant transcriptome subtypes within each SGS MB, which are associated with unique gene expression signatures and signaling pathways. These prognostic subsets may be in connection to the intra-tumoral cell landscape that underlies SGS MB clinical-molecular diversity. Here, we performed a deconvolution analysis of the Grp3/Grp4 MB bulk RNA profiles using the previously identified single-cell RNA-seq reference dataset and focusing on variability in the cellular composition of SGS MB. RNA deconvolution analysis of the Grp3/Grp4 MB disclosed the subgroup-specific neoplastic cell subpopulations. Neuronally differentiated axodendritic GP3-C1 and glutamatergic GP4-C1 subpopulations were distributed within Grp3- and Grp4-associated SGS MB, respectively. Progenitor GP3-B2 subpopulation was prominent in aggressive SGS II MB, whereas photoreceptor/visual perception GP3/4-C2 cell content was typical for SGS III/IV MB. The current study also revealed significant variability in the proportions of cell subpopulations between clinically relevant SGS MB transcriptome subtypes, where unfavorable cohorts were enriched with cell cycle and progenitor-like cell subpopulations and, vice versa, favorable subtypes were composed of neuronally differentiated cell fractions predominantly. A higher than median proportion of proliferating and progenitor cell subpopulations conferred the shortest survival of the Grp3 and Grp 4 MB, and similar survival associations were identified for all SGS MB except SGS IV MB. In summary, the recently identified clinically relevant Grp3/Grp4 MB transcriptome subtypes are composed of different cell populations. Future studies should aim to validate the prognostic and therapeutic role of the identified Grp3/Grp4 MB inter-tumoral cellular heterogeneity. The application of the single-cell techniques on each SGS MB separately could help to clarify the clinical significance of subgroup-specific variability in tumor cell content and its relation with prognostic transcriptome signatures identified before.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Transcriptoma , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Proliferación Celular/genética , Masculino , Niño , Femenino , Preescolar , Adolescente , Pronóstico
14.
J Pathol ; 261(3): 298-308, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37681286

RESUMEN

The consensus molecular subtype (CMS) classification divides colorectal cancer (CRC) into four distinct subtypes based on RNA expression profiles. The biological differences between CMSs are already present in CRC precursor lesions, but not all CMSs pose the same risk of malignant transformation. To fully understand the path to malignant transformation and to determine whether CMS is a fixed entity during progression, genomic and transcriptomic data from two regions of the same CRC lesion were compared: the precursor region and the carcinoma region. In total, 24 patients who underwent endoscopic removal of T1-2 CRC were included. Regions were subtyped for CMS and DNA mutation analysis was performed. Additionally, a set of 85 benign adenomas was CMS-subtyped. This analysis revealed that almost all benign adenomas were classified as CMS3 (91.8%). In contrast, CMS2 was the most prevalent subtype in precursor regions (66.7%), followed by CMS3 (29.2%). CMS4 was absent in precursor lesions and originated at the carcinoma stage. Importantly, CMS switching occurred in a substantial number of cases and almost all (six out of seven) CMS3 precursor regions showed a shift to a different subtype in the carcinoma part of the lesion, which in four cases was classified as CMS4. In conclusion, our data indicate that CMS3 is related to a more indolent type of precursor lesion that less likely progresses to CRC and when this occurs, it is often associated with a subtype change that includes the more aggressive mesenchymal CMS4. In contrast, an acquired CMS2 signature appeared to be rather fixed during early CRC development. Combined, our data show that subtype changes occur during progression and that CMS3 switching is related to changes in the genomic background through acquisition of a novel driver mutation (TP53) or selective expansion of a clone, but also occurred independently of such genetic changes. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

15.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34479993

RESUMEN

Neuroblastomas are childhood tumors with frequent fatal relapses after induction treatment, which is related to tumor evolution with additional genomic events. Our whole-genome sequencing data analysis revealed a high frequency of somatic cytosine > adenine (C > A) substitutions in primary neuroblastoma tumors, which was associated with poor survival. We showed that increased levels of C > A substitutions correlate with copy number loss (CNL) of OGG1 or MUTYH Both genes encode DNA glycosylases that recognize 8-oxo-guanine (8-oxoG) lesions as a first step of 8-oxoG repair. Tumor organoid models with CNL of OGG1 or MUTYH show increased 8-oxoG levels compared to wild-type cells. We used CRISPR-Cas9 genome editing to create knockout clones of MUTYH and OGG1 in neuroblastoma cells. Whole-genome sequencing of single-cell OGG1 and MUTYH knockout clones identified an increased accumulation of C > A substitutions. Mutational signature analysis of these OGG1 and MUTYH knockout clones revealed enrichment for C > A signatures 18 and 36, respectively. Clustering analysis showed that the knockout clones group together with tumors containing OGG1 or MUTYH CNL. In conclusion, we demonstrate that defects in 8-oxoG repair cause accumulation of C > A substitutions in neuroblastoma, which contributes to mutagenesis and tumor evolution.


Asunto(s)
Reparación del ADN/genética , Guanosina/análogos & derivados , Neuroblastoma/genética , Adenina/metabolismo , Niño , Citosina/metabolismo , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Femenino , Guanina/metabolismo , Guanosina/genética , Guanosina/metabolismo , Humanos , Masculino , Mutagénesis , Recurrencia Local de Neoplasia/genética , Neuroblastoma/metabolismo , Estrés Oxidativo , Polimorfismo de Nucleótido Simple/genética
16.
Genes Chromosomes Cancer ; 62(3): 167-170, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36379683

RESUMEN

Myxoid liposarcoma (MLS) is molecularly characterized by fusions involving the DDIT3 gene in chromosome band 12q13; the fusion partner is FUS in band 16p11 in 90-95% of the cases and EWSR1 in band 22q12 in the remaining 5-10%. Hence, molecular studies, often fluorescence in situ hybridization (FISH) for DDIT3 rearrangement, are useful for establishing a correct diagnosis. Although all MLS tumors should have DDIT3 fusions, it is important to be aware of reasons for potential false-negative results. We here present a case of MLS that was negative for FISH for DDIT3, that showed an unexpected t(11;22) at G-banding, but that displayed a characteristic EWSR1::DDIT3 fusion at RNA-sequencing. The results suggest that neoplasia-associated fusions that, due to the transcriptional orientations of the two genes involved, cannot arise through only two double-strand breaks are more likely to be associated with negative FISH-findings and unexpected karyotypes.


Asunto(s)
Liposarcoma Mixoide , Liposarcoma , Humanos , Adulto , Liposarcoma Mixoide/genética , Liposarcoma Mixoide/patología , Hibridación Fluorescente in Situ , Secuencia de Bases , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Liposarcoma/genética , Factor de Transcripción CHOP/genética , Proteína EWS de Unión a ARN/genética
17.
Acta Neuropathol ; 145(6): 829-842, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37093271

RESUMEN

Medulloblastoma (MB), one of the most common malignant pediatric brain tumor, is a heterogenous disease comprised of four distinct molecular groups (WNT, SHH, Group 3, Group 4). Each of these groups can be further subdivided into second-generation MB (SGS MB) molecular subgroups, each with distinct genetic and clinical characteristics. For instance, non-WNT/non-SHH MB (Group 3/4) can be subdivided molecularly into eight distinct and clinically relevant tumor subgroups. A further molecular stratification/summarization of these SGS MB would allow for the assignment of patients to risk-associated treatment protocols. Here, we performed DNA- and RNA-based analysis of 574 non-WNT/non-SHH MB and analyzed the clinical significance of various molecular patterns within the entire cohort and the eight SGS MB, with the aim to develop an optimal risk stratification of these tumors. Multigene analysis disclosed several survival-associated genes highly specific for each molecular subgroup within this non-WNT/non-SHH MB cohort with minimal inter-subgroup overlap. These subgroup-specific and prognostically relevant genes were associated with pathways that could underlie SGS MB clinical-molecular diversity and tumor-driving mechanisms. By combining survival-associated genes within each SGS MB, distinct metagene sets being appropriate for their optimal risk stratification were identified. Defined subgroup-specific metagene sets were independent variables in the multivariate models generated for each SGS MB and their prognostic value was confirmed in a completely non-overlapping validation cohort of non-WNT/non-SHH MB (n = 377). In summary, the current results indicate that the integration of transcriptome data in risk stratification models may improve outcome prediction for each non-WNT/non-SHH SGS MB. Identified subgroup-specific gene expression signatures could be relevant for clinical implementation and survival-associated metagene sets could be adopted for further SGS MB risk stratification. Future studies should aim at validating the prognostic role of these transcriptome-based SGS MB subtypes in prospective clinical trials.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Niño , Humanos , Meduloblastoma/patología , Estudios Prospectivos , Neoplasias Cerebelosas/patología , Perfilación de la Expresión Génica
18.
PLoS Biol ; 18(3): e3000648, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32182234

RESUMEN

The memory CD8 T-cell pool must select for clones that bind immunodominant epitopes with high affinity to efficiently counter reinfection. At the same time, it must retain a level of clonal diversity to allow recognition of pathogens with mutated epitopes. How the level of diversity within the memory pool is controlled is unclear, especially in the context of a selective drive for antigen affinity. We find that preservation of clones that bind the activating antigen with low affinity depends on expression of the transcription factor Eomes in the first days after antigen encounter. Eomes is induced at low activating signal strength and directly drives transcription of the prosurvival protein Bcl-2. At higher signal intensity, T-bet is induced which suppresses Bcl-2 and causes a relative survival advantage for cells of low affinity. Clones activated with high-affinity antigen form memory largely independent of Eomes and have a proliferative advantage over clones that bind the same antigen with low affinity. This causes high-affinity clones to prevail in the memory pool, despite their relative survival deficit. Genetic or therapeutic targeting of the Eomes/Bcl-2 axis reduces the clonal diversity of the memory pool, which diminishes its ability to respond to pathogens carrying mutations in immunodominant epitopes. Thus, we demonstrate on a molecular level how sufficient diversity of the memory pool is established in an environment of affinity-based selection.


Asunto(s)
Apoptosis/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Proteínas de Dominio T Box/inmunología , Animales , Variación Antigénica/inmunología , Supervivencia Celular/inmunología , Células Cultivadas , Selección Clonal Mediada por Antígenos/genética , Selección Clonal Mediada por Antígenos/inmunología , Regulación de la Expresión Génica/inmunología , Activación de Linfocitos , Ratones , Células Precursoras de Linfocitos T/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal , Proteínas de Dominio T Box/genética
19.
Pediatr Res ; 94(2): 458-461, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36788290

RESUMEN

Oncometabolism can be targeted for the development of less myelotoxic oncotherapeutics. Lactate dehydrogenase A (LDHA) is central to the Warburg effect, a potential oncometabolic shift in neuroblastoma (NBL). Advanced surgical, cytotoxic and cell-differentiating therapies improved survival of children with NBL. Anti-GD2 monoclonal antibodies (mAb) effectively targeting NBL are also incorporated into complex therapies. However, poor clinical outcomes of high-risk NBL require improvements. Here, we verified the pre-reported prognostic value of LDHA expression in NBL using the R2 onco-genomics platform. Kaplan-Meier curves re-demonstrated that higher tumor LDHA expression correlates with worse survival. Multivariate statistics confirmed LDHA is independent from age, stage, and MYCN amplification. In conclusion, a molecular construct is proposed with anti-GD2 mAbs utilized for the targeted delivery of liposomes containing an LDHA inhibitor, Oxamate. Development and preclinical testing of this immunoliposome may validate targeted inhibition of the Warburg effect for NBL. IMPACT: Development of therapeutics against oncometabolism. Targeted specified drug-delivery with mAb. Sparing normal tissues from profound LDHA inhibition. Immunoliposome loaded with an anti-metabolite. If preclinically successful, has translational potential.


Asunto(s)
Antineoplásicos , Neuroblastoma , Niño , Humanos , Liposomas/uso terapéutico , Gangliósidos/metabolismo , Gangliósidos/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Antineoplásicos/uso terapéutico , Anticuerpos Monoclonales , Línea Celular Tumoral
20.
Nature ; 547(7663): 311-317, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28726821

RESUMEN

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


Asunto(s)
Análisis Mutacional de ADN , Genoma Humano/genética , Meduloblastoma/clasificación , Meduloblastoma/genética , Secuenciación Completa del Genoma , Carcinogénesis/genética , Proteínas Portadoras/genética , Estudios de Cohortes , Metilación de ADN , Conjuntos de Datos como Asunto , Epistasis Genética , Genómica , Humanos , Terapia Molecular Dirigida , Proteínas Musculares/genética , Mutación , Oncogenes/genética , Factores de Transcripción/genética , Proteínas Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA