Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 360(1): 95-105, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27760784

RESUMEN

In this work, we first describe the population variability in hepatic drug metabolism using cryopreserved hepatocytes from five different donors cultured in a perfused three-dimensional human liver microphysiological system, and then show how the resulting data can be integrated with a modeling and simulation framework to accomplish in vitro-in vivo translation. For each donor, metabolic depletion profiles of six compounds (phenacetin, diclofenac, lidocaine, ibuprofen, propranolol, and prednisolone) were measured, along with metabolite formation, mRNA levels of 90 metabolism-related genes, and markers of functional viability [lactate dehydrogenase (LDH) release, albumin, and urea production]. Drug depletion data were analyzed with mixed-effects modeling. Substantial interdonor variability was observed with respect to gene expression levels, drug metabolism, and other measured hepatocyte functions. Specifically, interdonor variability in intrinsic metabolic clearance ranged from 24.1% for phenacetin to 66.8% for propranolol (expressed as coefficient of variation). Albumin, urea, LDH, and cytochrome P450 mRNA levels were identified as significant predictors of in vitro metabolic clearance. Predicted clearance values from the liver microphysiological system were correlated with the observed in vivo values. A population physiologically based pharmacokinetic model was developed for lidocaine to illustrate the translation of the in vitro output to the observed pharmacokinetic variability in vivo. Stochastic simulations with this model successfully predicted the observed clinical concentration-time profiles and the associated population variability. This is the first study of population variability in drug metabolism in the context of a microphysiological system and has important implications for the use of these systems during the drug development process.


Asunto(s)
Hígado/metabolismo , Perfusión , Preparaciones Farmacéuticas/metabolismo , Criopreservación , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/metabolismo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Hígado/citología , Hígado/fisiología , Fenotipo , Albúmina Sérica/metabolismo , Técnicas de Cultivo de Tejidos , Distribución Tisular
2.
Artículo en Inglés | MEDLINE | ID: mdl-38821675

RESUMEN

Currently, there is no test system, whether in vitro or in vivo, capable of examining all endpoints required for genotoxicity evaluation used in pre-clinical drug safety assessment. The objective of this study was to develop a model which could assess all the required endpoints and possesses robust human metabolic activity, that could be used in a streamlined, animal-free manner. Liver-on-chip (LOC) models have intrinsic human metabolic activity that mimics the in vivo environment, making it a preferred test system. For our assay, the LOC was assembled using primary human hepatocytes or HepaRG cells, in a MPS-T12 plate, maintained under microfluidic flow conditions using the PhysioMimix® Microphysiological System (MPS), and co-cultured with human lymphoblastoid (TK6) cells in transwells. This system allows for interaction between two compartments and for the analysis of three different genotoxic endpoints, i.e. DNA strand breaks (comet assay) in hepatocytes, chromosome loss or damage (micronucleus assay) and mutation (Duplex Sequencing) in TK6 cells. Both compartments were treated at 0, 24 and 45 h with two direct genotoxicants: methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS), and two genotoxicants requiring metabolic activation: benzo[a]pyrene (B[a]P) and cyclophosphamide (CP). Assessment of cytochrome activity, RNA expression, albumin, urea and lactate dehydrogenase production, demonstrated functional metabolic capacities. Genotoxicity responses were observed for all endpoints with MMS and EMS. Increases in the micronucleus and mutations (MF) frequencies were also observed with CP, and %Tail DNA with B[a]P, indicating the metabolic competency of the test system. CP did not exhibit an increase in the %Tail DNA, which is in line with in vivo data. However, B[a]P did not exhibit an increase in the % micronucleus and MF, which might require an optimization of the test system. In conclusion, this proof-of-principle experiment suggests that LOC-MPS technology is a promising tool for in vitro hazard identification genotoxicants.


Asunto(s)
Hepatocitos , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Mutágenos , Humanos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Mutágenos/toxicidad , Pruebas de Micronúcleos/métodos , Pruebas de Mutagenicidad/métodos , Hígado/efectos de los fármacos , Hígado/metabolismo , Dispositivos Laboratorio en un Chip , Daño del ADN/efectos de los fármacos , Ensayo Cometa/métodos , Ciclofosfamida/toxicidad , Metilmetanosulfonato/toxicidad , Línea Celular , Benzo(a)pireno/toxicidad , Técnicas de Cocultivo , Metanosulfonato de Etilo/toxicidad , Mutación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA