Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 337: 117591, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36996549

RESUMEN

In this review article, waste materials (biogenic/non-biogenic) are focused as the flocculants for harvesting of algal biomass. Chemical flocculants are widely utilized for the effective harvesting of algal biomass at a commercial scale while the high cost is a major drawback. The waste materials-based flocculants (WMBF) are started to utilize as one of the cost-effective performance for dual benefits of waste minimization and reuse for sustainable recovery of biomass. The novelty of the article is articulated with the objective that presents an insight of WMBF, classification of WMBF, preparation methods of WMBF, mechanisms of flocculation, factors affecting flocculation-mechanism, challenges and future recommendations that are required for harvesting of algae. The WMBF are shown similar flocculation mechanisms and flocculation efficiencies as chemical flocculants. Thus, the utilization of waste material for the flocculation process of algal cells minimizes the waste load into the environment and transforms the waste materials into valuable resources.


Asunto(s)
Microalgas , Biomasa , Floculación
2.
Environ Monit Assess ; 195(12): 1402, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917378

RESUMEN

In the present work, an investigation was performed based on the genera and species stated in Palmer pollution index to show the extent of organic pollution in the surface water of the Tawi watershed in the Jammu province of the Union Territory of Jammu and Kashmir using algal pollution indices. Sampling was carried out for two seasons, pre-monsoon (PRM) and post-monsoon (POM), at 16 locations distributed over the entire Tawi watershed. The physico-chemical variables like water temperature, pH, electrical conductivity, TDS, total alkalinity, total hardness, DO, BOD, COD, nitrate, and phosphate were analyzed. The seasonal distribution of the pollution-tolerant algal genera and species was recorded and the algal pollution index for both genus (AGP index) and species (ASP index) was also calculated. The concentration of BOD, COD, and nitrate in the sampled river water was found to be higher during the PRM season as compared to the POM season. The lower stretch of the watershed (Jammu Sub-Watershed) falls in class IV-V as per the polluted river stretch priority ranking based on BOD levels as BOD levels are >3 mg/L in the downstream locations during both seasons. A total of 23 algal taxa belonging to 8 families, Chlorophyceae (4 algal genera), Cyanophyceae (2 algal genera), Bacillariophyceae (7 algal genera), Zygnematophyceae (3 algal genera), Trebouxiophyceae (2 algal genera), Ulvophyceae (1 algal genus), Mediophyceae (1 algal genus), and Euglenophyceae (3 algal genera), have been reported in the Tawi watershed. The results of the Palmer indices showed a lack of organic pollution in the upstream, varying pollution levels in the midstream, and partially high to very high organic pollution levels in the downstream of the watershed. Comparative temporal analysis of the distribution of pollution-tolerant algal genera and species showed more organic pollution during PRM. Navicula and Cymbella were found to be the most abundant genera in almost all the stations, whereas Ulothrix, Cocconeis, Anacystis, and Crucigenia were the least recorded genera in the entire watershed. The results will enhance the understanding of the health status of the watershed, and provide database for watershed vulnerability assessment for sustainability and watershed management with spatio-temporal improvement.


Asunto(s)
Chlorophyta , Diatomeas , Humanos , Calidad del Agua , Monitoreo del Ambiente/métodos , Nitratos , Ríos , Agua Dulce , Compuestos Orgánicos , Estaciones del Año
3.
Bull Environ Contam Toxicol ; 108(3): 485-490, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33950268

RESUMEN

The current study focused on the pollution remediation of textile industry wastewater by using Chlorella pyrenoidosa in two different physical forms: free algal biomass and immobilized algal biomass. The hypothesis behind the present study was to analyze the pollution reduction efficiency of immobilized algal biomass and free algal biomass on comparative scale on the basis of the adsorption process which is directly proportional with the surface area of the adsorbate. So, in this context the immobilized form of algae could enhance the pollution reduction efficiency due to availability of more surface area. So, the textile industry wastewater was treated by both free algal biomass and immobilized algal biomass and the major wastewater contributors like nitrate, phosphate, Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) were assessed before and after the treatment process. To conclude the optimum comparative results, the pH of wastewater was maintained constant, as it can capitalize or moderate the adsorption process (initial pH of was 8.2 ± 0.1, but it was maintained to 8). The contamination remediation was found to be effective with immobilized algal biomass (46.7% of nitrate, 59.4% of phosphate, 83.1% BOD and 83.0% of COD) than free algal biomass (43.2% of nitrate, 56.7% of phosphate, 71.4% of BOD and 78.0% COD).


Asunto(s)
Chlorella , Aguas Residuales , Biomasa , Concentración de Iones de Hidrógeno , Industria Textil
4.
Bull Environ Contam Toxicol ; 109(6): 969-976, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35364685

RESUMEN

The phytoremediation of wastewater has certain advantages, but the interactions of soil and crop properties have not been systematically studied. This study aimed to analyze how different concentrations of textile dyeing industry wastewater (25%, 50%, 75%, and 100%) affected soil qualities, growth, and yield attributes (Vigna radiata). In reaction to dyeing effluent at varying concentrations, the seed germination percentage, growth metrics such as tolerance index, phytotoxicity percentage, relative toxicity, extreme and plumule length were calculated. With increasing effluent concentrations, a gradual decrease in the germination of seed and seedling growth was observed. The maximal relative toxicity and percentage of phytotoxicity was 100%. Interaction of biometric growth profile relative seed germination, relative root growth, relative shoot growth, growth index, and seedling vigor index of V. radiata and physicochemical parameter of textile dyeing industry wastewater were also investigated by using the Pearson correlation co-efficient. Principal component analysis (PCA) is helped to obtain and recognize the factors/sources accountability of different concentrations of textile dyeing industry wastewater. The results of the PCA revealed that four components (PC1 to PC4) out of total principal components retained PC1, PC2, with values of 69.25% and 28.85%, respectively.


Asunto(s)
Contaminantes Ambientales , Vigna , Aguas Residuales/química , Colorantes , Contaminantes Ambientales/análisis , Plantones/química , Textiles , Biometría , Suelo
5.
Bull Environ Contam Toxicol ; 108(3): 507-517, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34255107

RESUMEN

Earlier investigations on biological methods of wastewater treatment have revealed that algal based wastewater treatment could be a green, cost effective and efficient approach for the removal of heavy metals. So, this study aimed to assess the potential of microalga Chlorella pyrenoidosa for remediation of heavy metals (Cr, Cu, Pb, Zn, Cd, Mn, and Ni) from varying concentration (25%, 50%, 75 and 100%) of wastewater collected from Common Effluent Treatment Plant. Heavy metals such as Cr, Cu, Pb, Zn, Cd, Mn, and Ni have been removed significantly from the wastewater, with percentage removal ranging from 73%, 60%, 75%, 66%, 87%, 83%, and 74% with 50% test solution, 57%, 59%, 70%, 56%, 72%, 66%, and 62% with 75% test solution, and 47%, 55%, 56%, 71%, 61%, 77%, and 72% with 100% test solution respectively. Studies on biochemical assay (protein, carbohydrate, and pigment) of Chlorella pyrenoidosa were also an important part of the present investigation to understand the interaction of heavy metals with algal biochemical compounds using Pearson correlation co-efficient. Biomass grown in CETP wastewater can be used for synthesis of various fruitful value-added end products like bio-diesel, pharmaceutical products, cosmetic products, bio-adsorbent etc.


Asunto(s)
Chlorella , Metales Pesados , Purificación del Agua , Biomasa , Metales Pesados/análisis , Aguas Residuales
6.
Cardiol Young ; 31(12): 1938-1942, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33827738

RESUMEN

Myocardial fibrosis is associated with adverse events in idiopathic dilated cardiomyopathy. Cardiac MRI with late gadolinium enhancement can detect myocardial fibrosis. We evaluated the conditional survival of children and adolescents based on native T1 mapping (combined proton signal from myocytes and interstitium prior to contrast administration by the measurement of myocardial and blood relaxation time) as a means to assess myocardial fibrosis. This retrospective case-cohort over a 3-year period included all consecutive patients (aged ≤ 21 years) with advanced heart failure from dilated cardiomyopathy (echocardiographic left ventricular ejection fraction ≤ 45% and NYHA class ≥ 2) who underwent cardiac MRI.Conditional survival (follow-up ≥ 6 months after cardiac MRI) was assessed to include NYHA functional class and time to event (death or heart transplantation). A total of 57 patients (mean age 11.7 ± 6.1 years; 58% male) had a median NYHA Class III (31/57) and median left ventricular ejection fraction 25% (20-38%). Survival data were available in 82% patients (46/57) and the crude mortality rate was 24% (11/46) and one patient (2%) underwent heart transplantation. The median native T1 was elevated at 1351 ms (95% CI 1332, 1394) and it showed no difference between the groups who survived to those who died. Performing a multilevel regression analysis on prognosis failed to predict 6-month conditional survival.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Adolescente , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/diagnóstico , Niño , Preescolar , Medios de Contraste , Femenino , Gadolinio , Humanos , Masculino , Pronóstico , Estudios Retrospectivos , Volumen Sistólico , Función Ventricular Izquierda
7.
J Environ Manage ; 280: 111789, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33370668

RESUMEN

Petroleum refining operations such as hydroprocessing and fluid catalytic cracking (FCC) generate huge quantities of spent catalysts containing toxic and valuable metals (Ni, V, Mo, Co, W, Al, etc.), the management of which is a serious environmental issue. Besides environmental concerns, the different metals present in the spent catalysts are also a valuable commodity to modern industries. Therefore, these spent catalysts also provide an opportunity to use it as a source of value to the refiners. In recent years, a biotechnological based leaching process 'bioleaching' has emerged as a promising eco-friendly technique for the extraction of metals from these refinery spent catalysts. Among various bioleaching agents such as archean, bacterial, or fungi, the process mediated by the fungi (Aspergillus niger, Penicillium simplicissimum, and many others) is gaining attention owing to the high metal extraction ability of the various fungal produced metabolites (organic acids) under moderately acidic conditions. Furthermore, the ability of these fungi to withstand wide process conditions (pH, spent catalyst concentration, substrate types, etc.), high metal toxicity and use of low-cost organic substrate make them an ideal candidate for bioleaching. In this review article, we shed light on the role and mechanisms of fungi involved in extracting different metals from spent hydroprocessing and FCC catalysts. Key process parameters that affect the efficiency of fungal based bioleaching are discussed. The techno-economic challenges associated with the process are elaborated, and the needed future research directions to promote its commercial applications are highlighted. Based on our analysis, it can be argued that the fungi bioleaching has potential, however, some challenges (slower kinetics, and health and safety) should be addressed before the process can be scaled up for the commercial application.


Asunto(s)
Metales , Petróleo , Aspergillus niger , Catálisis , Penicillium
8.
J Environ Manage ; 297: 113300, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34293672

RESUMEN

This article offers a trend of inventions and implementations of photocatalysis process, desalination technologies and solar disinfection techniques adapted particularly for treatment of industrial and domestic wastewater. Photocatalysis treatment of wastewater using solar energy is a promising renewable solution to reduce stresses on global water crisis. Rendering to the United Nation Environment Programme, 1/3 of world population live in water-stressed countries, while by 2025 about 2/3 of world population will face water scarcity. Major pollutants exhibited from numerous sources are critically discussed with focus on potential environmental impacts & hazards. Treatment of wastewater by photocatalysis technique, solar thermal electrochemical process, solar desalination of brackish water and solar advanced oxidation process have been presented and systematically analysed with challenges. Both heterogenous and homogenous photocatalysis techniques employed for wastewater treatment are critically reviewed. For treating domestic wastewater, solar desalination technologies adopted for purifying brackish water into potable water is presented along with key challenges and remedies. Advanced oxidation process using solar energy for degradation of organic pollutant is an important technique to be reviewed due to their effectiveness in wastewater treatment process. Present article focused on three key issues i.e. major pollutants, wastewater treatment techniques and environmental benefits of using solar power for removal of pollutants. The review also provides close ideas on further research needs and major concerns. Drawbacks associated with conventional wastewater treatment options and direct solar energy-based wastewater treatment with energy storage systems to make it convenient during day and night both listed. Although, energy storage systems increase the overall cost of the wastewater treatment plant it also increases the overall efficiency of the system on environmental cost. Cost-efficient wastewater treatment methods using solar power would significantly ensure effective water source utilization, thereby contributing towards sustainable development goals.


Asunto(s)
Energía Solar , Purificación del Agua , Luz Solar , Aguas Residuales , Agua
9.
J Environ Manage ; 245: 519-539, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30803750

RESUMEN

Rate of energy production is reflecting growth of nations and most of energy produced from the coal and natural gas-based thermal power plants (TPPs). Flue gas (point sources of emission) are main exhaustible form of gases that come from thermal power plants and are continuously promoting climate change and various environmental problems in global scenario. The present available technologies of flue gas treatment are energy and cost-intensive process. Among the available techniques for fixation of flue-gases at sustainable part, microalgal bio-fixation of flue gas is an alternative promising and competent technology with assurance of eco-friendly path of low energy and low-cost solution for pollution abetment with production of value added products. According to mechanism involves during photosynthetic process of microalgae, it utilizes atmospheric CO2 and CO2 from flue gases for their growth. Past, present and future treatment technologies for flue gas with their challenges are discussed. Recent experimental studies and commercially available bioreactors are very particular for bio-fixation of flue gas from thermal power plants are also reviewed with their future perspectives. The commercial viability of process with specific microalgal strains and utilized biomass for further value-added products are suggested with future limitations.


Asunto(s)
Dióxido de Carbono , Microalgas , Biomasa , Gases , Centrales Eléctricas
10.
J Environ Manage ; 231: 562-569, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388653

RESUMEN

An experimental study was performed to evaluate the comparative efficiency of bio-flocculant (waste egg shell), laboratory available calcium carbonate (LACC) and alum (Al2 (SO4)3) for harvesting of unicellular microalga, Chlorella pyrenoidosa. The influence of pH on zeta potential (ζ) was also studied to explain the chemistry of flocculation process. The maximum harvesting efficiency (99%) was obtained with alum with deformities in algal cell surfaces. Waste egg-shell material is developed as a low-cost bio-flocculant for harvesting of Chlorella pyrenoidosa using 100 mg egg-shell bio-flocculant/L and 100 mg LACC/L, zeta potential analysis was completed to further understand the chemistry of harvesting efficiency over the different ranges of pH (2.0, 4.0, 6.0, 8.0, and 10.0). The optimized range for harvesting efficiency (HE) of pH is 4.0-8.0 for both flocculants. Maximal harvesting efficiency was achieved at pH 4.0 (99%) and pH 8.0 (95%) with bio-flocculant and LACC respectively. Hence, bio-flocculant based harvesting method is found as the best way to dewatering the algal biomass from aqueous medium with entire and intact algal cell surface with environment friendly and cost-effective approach.


Asunto(s)
Chlorella , Microalgas , Biomasa , Floculación , Agua
12.
J Environ Manage ; 163: 270-7, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26349408

RESUMEN

Potential of Chlorella pyrenoidosa was experimentally investigated for phycoremediation and dye removal from textile wastewater (TWW) in batch cultures. Growth of alga was observed at various concentration of textile wastewater (25%, 50%, 75% and 100%) and was found in a range of 8.1-14 µg ml(-1) day(-1). Growth study revealed that alga potentially grows up to 75% concentrated textile wastewater and reduces phosphate, nitrate and BOD by 87%, 82% and 63% respectively. Methylene blue dye (MB) removal was also observed by using dry and wet algal biomass harvested after phycoremediation. Adsorption isotherms (Langmuir and Freundlich) and kinetic models (pseudo first and second order) were applied on adsorption process. Dry algal biomass (DAB) was found more efficient biosorbent with large surface area and showed high binding affinity for MB dye in compare to wet algal biomass (WAB). The RL value for both biosorbent showed feasible adsorption process as the obtained value was between 0 and 1. Pseudo second order kinetic model with high degree of correlation coefficient and low sum of error squares (SSE %) value was found more suitable for representation of adsorption process in case of both biosorbents, however pseudo first order also showed high degree of correlation for both biosorbents.


Asunto(s)
Chlorella/metabolismo , Azul de Metileno/farmacocinética , Textiles , Aguas Residuales/química , Contaminantes Químicos del Agua/farmacocinética , Adsorción , Biodegradación Ambiental , Biomasa , Residuos Industriales , Cinética , Azul de Metileno/análisis , Modelos Teóricos , Nitratos/análisis , Nitratos/metabolismo , Fosfatos/análisis , Fosfatos/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis
13.
Artículo en Inglés | MEDLINE | ID: mdl-24117088

RESUMEN

A comparative study was undertaken using indigenous sulfur-oxidizing microorganisms and iron-oxidizing microorganisms in separate 12 litre continuous stirred tank reactors (CSTRs) for solubilization of heavy metals from anaerobically digested sewage sludge. The CSTRs were operated at hydraulic retention times (HRTs) ranging from 4 to 10 days using sewage sludge feed having near neutral pH. The pH, oxidation-reduction potential (ORP) and solubilization efficiency of metals were found to be highly dependent on HRT and an increase in HRT led to higher solubilization of metals in both the CSTRs. In both the CSTRs, the CSTR operated with sulfur-oxidizing microorganisms at an HRT of 8 days was found to be optimum in solubilizing 58% Cu, 52% Ni, 72% Zn and 43% Cu from the sludge. The nutrient value, nitrogen and phosphorus of bioleached sludge was also conserved (<20% loss) at 8 days HRT. The metals fractionation study conducted using BCR sequential extraction procedure suggested that most of the metals remaining in the bioleached sludge were in the more stable fractions (F3 and F4) and, therefore, can be safely apply as a fertilizer on land.


Asunto(s)
Bacterias/metabolismo , Reactores Biológicos/microbiología , Hierro/metabolismo , Metales Pesados/metabolismo , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Azufre/metabolismo , Microbiología del Suelo
14.
Environ Sci Pollut Res Int ; 31(5): 7179-7193, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38158522

RESUMEN

The efficient management and treatment of pharmaceutical industry wastewater (PIWW) have become a serious environmental issue due to its high toxicity. To overcome this problem, the present study deals with the phycoremediation of PIWW using Chlorella vulgaris microalga isolated from the Ganga River at Haridwar, India. For this, response surface methodology (RSM) and artificial neural network (ANN) tools were used to identify the best reduction of total phosphorus (TP) and total Kjeldahl's nitrogen (TKN) based pollutants along with the lipid production efficiency of C. vulgaris. Three different concentrations of pharmaceutical wastewater (0, 50, and 100%), operating temperatures (20, 25, and 30 °C), and light intensity (2000, 3000, and 4000 lx) were used to design the phycoremediation experiments having 6:18 h of dark/light period and reactor functional volume of 15L. Findings revealed that C. vulgaris was good enough to remove maximum TP (90.35%), TKN (83.55%) along 20.88% of lipid yield at 25.62 °C temperature, 60.73% PIWW concentration, and 4000 lx of light intensity, respectively. Based on the model performance and validation results, ANN showed more accuracy as compared to the RSM tool. Therefore, the findings of this study showed that C. vulgaris is capable of treating PIWW efficiently along with significant production of lipid content which can further be used in various applications including biofuel production.


Asunto(s)
Chlorella vulgaris , Microalgas , Aguas Residuales , Lípidos , Biomasa , Nitrógeno , Fósforo , Preparaciones Farmacéuticas
15.
Artículo en Inglés | MEDLINE | ID: mdl-38509676

RESUMEN

BACKGROUND: Nowadays, acidity is a severe problem worldwide caused by excessive gastric acid secretion by the stomach and proximal intestine. OBJECTIVE: Antacids are drugs capable of buffering stomach acid. Therefore, in our research work, we have reported the in-silico studies, synthesis, characterization, and evaluation of antacid activities of magnesium (II) complexes via the acid-base neutralization process. METHODS: In this research, some magnesium complexes were synthesized and their antacid behavior was compared with marketed products. Also, in-silico studies were performed on H+/K+ ATPase (Proton pump). All synthesized compounds were characterized by various spectroscopic techniques like UV-Vis, FT-IR, XRD, and DSC techniques. RESULT: Spectroscopic analysis results showed that the semicarbazone ligand shows keto-enol isomerism and forms a coordinated stable complex with magnesium ions in the crystalline phase. The FT-IR results confirmed the presence of Mg-O stretching, N-H bending, and C=N stretching vibrations in Mg (II) complexes. CONCLUSION: The antacid activities of Mg (II) complexes were excellent as compared to the semicarbazone ligand and comparable with that of marketed antacid drugs like ENO, and Pantop-D. Insilco studies also confirmed that semicarbazone ligand and its Mg (II) complexes were both found to be fitted into the active sites of molecular targets, and Mg (II) complexes showed better binding affinities towards macromolecular as compared to semicarbazone ligand.

16.
Carbohydr Res ; 543: 109208, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39013334

RESUMEN

Enzyme immobilization has emerged as a prodigious strategy in the enzymatic hydrolysis of lignocellulosic biomass (LCB) promising enhanced efficacy and stability of the enzymes. Further, enzyme immobilization on magnetic nanoparticles (MNPs) facilitates the easy recovery and reuse of biocatalysts. This results in the development of a nanobiocatalytic system, that serves as an eco-friendly and inexpensive LCB deconstruction approach. This review provides an overview of nanomaterials used for immobilization with special emphasis on the nanomaterial-enzyme interactions and strategies of immobilization. After the succinct outline of the immobilization procedures and supporting materials, a comprehensive assessment of the catalysis enabled by nanomaterial-immobilized biocatalysts for the conversion and degradation of lignocellulosic biomasses is provided by gathering state-of-the-art examples. The challenges and future directions associated with this technique providing a potential solution in the present article. Insight on the recent advancements in the process of nanomaterial-based immobilization for the hydrolysis of lignocellulosic biomass has also been highlighted in the article.

17.
Indian J Pediatr ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38282105

RESUMEN

Cardiac computed tomography (CT) imaging plays a pivotal role in the diagnosis and management of infants and young children with congenital heart disease (CHD). While the benefits of CT imaging are well-established, the challenge lies in adapting these procedures to the unique requirements of infants and young children. Traditionally, sedation has been a common practice to ensure cooperation and motion control during imaging. However, using sedation introduces its challenges including potential risks, limitations, and cost implications. In this study, authors explore the feasibility, safety, and diagnostic accuracy of unsedated cardiac CT examinations in infants and young children. This study proves cardiac CT can be performed in India without sedation using simple restraining techniques. This approach aligns with the cultural and familial dynamics prevalent in the country and holds the potential to address economic and infrastructure challenges.

18.
J Interpers Violence ; 38(5-6): 4970-4997, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36062758

RESUMEN

Most studies on intimate partner violence (IPV) and its drivers have focused on individual-and household-level characteristics of the victim. Recent studies have acknowledged that it is a community-level phenomenon, using spatial analytical methods to analyze community-level determinants of IPV and its geographic dimensions. Such studies provide mixed evidence on the impact of different factors and need to be supplemented by similar studies-particularly in South Asian countries where IPV is common. The present study examines district-level variations in the incidence of various forms of IPV and identifies its determinants in India, a fast-growing South Asian country with poor gender indicators. The study combines data from the National Family Health Survey, District Level Household Survey, and the decadal Census. It applies spatial analytical methods such as the Global Moran's I, Getis-ord statistic, and Multivariate Local Geary to determine the nature of the spatial distribution of different categories of IPV. Spatial regression models are used to identify the community-level predictors of each category of IPV. The study finds non-random overlapping spatial clusters in the eastern part of India. The study also finds that neighborhoods characterized by low empowerment levels, and with a high child sex ratio, road connectivity, and proportion of socially marginalized groups are more likely to exhibit high levels of all types of IPV-although the impact of these determinants varies across districts. Furthermore, spill-overs in the incidence of IPV between neighboring districts are also observed. The study concludes by recommending the use of localized policies, rather than broad national or state policies, in reducing IPV.


Asunto(s)
Víctimas de Crimen , Violencia de Pareja , Niño , Humanos , Análisis Espacial , India/epidemiología , Geografía , Factores de Riesgo , Prevalencia , Parejas Sexuales
19.
Enzyme Microb Technol ; 171: 110304, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37639935

RESUMEN

Depleting fossil fuels and net carbon emissions associated with their burning have driven the need to find alternative energy sources. Biofuels are near-perfect candidates for alternative energy sources as they are renewable and account for no net CO2 emissions. However, biofuel production must overcome various challenges to compete with conventional fuels. Conventional methods for bioconversion of biomass to biofuel include chemical, thermochemical, and biological processes. Substrate selection and processing, low yield, and total cost of production are some of the main issues associated with biofuel generation. Recently, the uses of nanotechnology and nanoparticles have been explored to improve the biofuel production processes because of their high adsorption, high reactivity, and catalytic properties. The role of these nanoscale particles and nanocatalysts in biomass conversion and their effect on biofuel production processes and yield are discussed in the present article. The applicability of nanotechnology in production processes of biobutanol, bioethanol, biodiesel, biohydrogen, and biogas under biorefinery approach are presented. Different types of nanoparticles, and their function in the bioprocess, such as electron transfer, pretreatment, hydrolysis, microalgae cultivation, lipid extraction, dark and photo fermentation, immobilization, and suppression of inhibitory compounds, are also highlighted. Finally, the current and potential applications of nanotechnology in biorefineries are also discussed.

20.
Environ Sci Pollut Res Int ; 29(49): 74643-74654, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35639322

RESUMEN

Dairy wastewaters (DWW) are rich in several pollutants, including high biochemical oxygen demand (BOD) and chemical oxygen demand (COD), and their unsafe disposal may cause damage to the environment. In this study, Chlorella vulgaris (identified as NIES:227 strain based on 28s rRNA sequencing) was isolated from the freshwater habitat of the Ganga River at Haridwar, India, and further tested for its efficacy in treating DWW. The phycoremediation experiments were conducted using three different DWW concentrations (0, 50, and 100%), operating temperatures (20, 25, and 30 °C), and light intensities (2000, 3000, and 4000 lx) using response surface methodology. Results showed that after 16 days of experiments, a significant (P < 0.05) reduction in BOD (96.65%) and COD (87.50%) along with a maximum biomass production of 1.757 g/L was achieved using 57.72% of dairy industry wastewater, 24.16 °C of reactor temperature, and 3874.51 lx of light intensity. The RSM models had coefficient of determination (R2) values above 0.9459 with a minimum difference between measured and predicted responses. Therefore, the findings of this study suggest that the isolated C. vulgaris can be effectively used to treat dairy wastewater along with significant production of algal biomass which can be further used for the generation of low-cost biofuel and other materials.


Asunto(s)
Chlorella vulgaris , Microalgas , Contaminantes Químicos del Agua , Biocombustibles , Biomasa , Oxígeno , ARN Ribosómico 28S , Ríos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA