Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(24): 6382-6387, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28533386

RESUMEN

The Himalayan Sherpas, a human population of Tibetan descent, are highly adapted to life in the hypobaric hypoxia of high altitude. Mechanisms involving enhanced tissue oxygen delivery in comparison to Lowlander populations have been postulated to play a role in such adaptation. Whether differences in tissue oxygen utilization (i.e., metabolic adaptation) underpin this adaptation is not known, however. We sought to address this issue, applying parallel molecular, biochemical, physiological, and genetic approaches to the study of Sherpas and native Lowlanders, studied before and during exposure to hypobaric hypoxia on a gradual ascent to Mount Everest Base Camp (5,300 m). Compared with Lowlanders, Sherpas demonstrated a lower capacity for fatty acid oxidation in skeletal muscle biopsies, along with enhanced efficiency of oxygen utilization, improved muscle energetics, and protection against oxidative stress. This adaptation appeared to be related, in part, to a putatively advantageous allele for the peroxisome proliferator-activated receptor A (PPARA) gene, which was enriched in the Sherpas compared with the Lowlanders. Our findings suggest that metabolic adaptations underpin human evolution to life at high altitude, and could have an impact upon our understanding of human diseases in which hypoxia is a feature.


Asunto(s)
Adaptación Fisiológica , Altitud , Etnicidad , Hipoxia/metabolismo , Adaptación Fisiológica/genética , Adulto , Presión Atmosférica , Ciclo del Ácido Cítrico , Metabolismo Energético , Etnicidad/genética , Ácidos Grasos/metabolismo , Femenino , Frecuencia de los Genes , Glucosa/metabolismo , Glucólisis , Humanos , Hipoxia/genética , Hipoxia/fisiopatología , Masculino , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Nepal , Óxido Nítrico/sangre , Fosforilación Oxidativa , Estrés Oxidativo , Consumo de Oxígeno , PPAR alfa/genética , PPAR alfa/metabolismo , Polimorfismo de Nucleótido Simple , Tibet/etnología
2.
BMC Biol ; 13: 110, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26694920

RESUMEN

BACKGROUND: Insulin sensitivity in skeletal muscle is associated with metabolic flexibility, including a high capacity to increase fatty acid (FA) oxidation in response to increased lipid supply. Lipid overload, however, can result in incomplete FA oxidation and accumulation of potentially harmful intermediates where mitochondrial tricarboxylic acid cycle capacity cannot keep pace with rates of ß-oxidation. Enhancement of muscle FA oxidation in combination with mitochondrial biogenesis is therefore emerging as a strategy to treat metabolic disease. Dietary inorganic nitrate was recently shown to reverse aspects of the metabolic syndrome in rodents by as yet incompletely defined mechanisms. RESULTS: Herein, we report that nitrate enhances skeletal muscle FA oxidation in rodents in a dose-dependent manner. We show that nitrate induces FA oxidation through a soluble guanylate cyclase (sGC)/cGMP-mediated PPARß/δ- and PPARα-dependent mechanism. Enhanced PPARß/δ and PPARα expression and DNA binding induces expression of FA oxidation enzymes, increasing muscle carnitine and lowering tissue malonyl-CoA concentrations, thereby supporting intra-mitochondrial pathways of FA oxidation and enhancing mitochondrial respiration. At higher doses, nitrate induces mitochondrial biogenesis, further increasing FA oxidation and lowering long-chain FA concentrations. Meanwhile, nitrate did not affect mitochondrial FA oxidation in PPARα(-/-) mice. In C2C12 myotubes, nitrate increased expression of the PPARα targets Cpt1b, Acadl, Hadh and Ucp3, and enhanced oxidative phosphorylation rates with palmitoyl-carnitine; however, these changes in gene expression and respiration were prevented by inhibition of either sGC or protein kinase G. Elevation of cGMP, via the inhibition of phosphodiesterase 5 by sildenafil, also increased expression of Cpt1b, Acadl and Ucp3, as well as CPT1B protein levels, and further enhanced the effect of nitrate supplementation. CONCLUSIONS: Nitrate may therefore be effective in the treatment of metabolic disease by inducing FA oxidation in muscle.


Asunto(s)
GMP Cíclico/metabolismo , Ácidos Grasos/metabolismo , Músculo Esquelético/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Alimentación Animal/análisis , Animales , Dieta , Relación Dosis-Respuesta a Droga , Masculino , Biogénesis de Organelos , Oxidación-Reducción , Ratas , Ratas Wistar
3.
Am J Physiol Regul Integr Comp Physiol ; 305(5): R534-41, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23785078

RESUMEN

Exposure to hypobaric hypoxia is sufficient to decrease cardiac PCr/ATP and alters skeletal muscle energetics in humans. Cellular mechanisms underlying the different metabolic responses of these tissues and the time-dependent nature of these changes are currently unknown, but altered substrate utilization and mitochondrial function may be a contributory factor. We therefore sought to investigate the effects of acute (1 day) and more sustained (7 days) hypoxia (13% O2) on the transcription factor peroxisome proliferator-activated receptor α (PPARα) and its targets in mouse cardiac and skeletal muscle. In the heart, PPARα expression was 40% higher than in normoxia after 1 and 7 days of hypoxia. Activities of carnitine palmitoyltransferase (CPT) I and ß-hydroxyacyl-CoA dehydrogenase (HOAD) were 75% and 35% lower, respectively, after 1 day of hypoxia, returning to normoxic levels after 7 days. Oxidative phosphorylation respiration rates using palmitoyl-carnitine followed a similar pattern, while respiration using pyruvate decreased. In skeletal muscle, PPARα expression and CPT I activity were 20% and 65% lower, respectively, after 1 day of hypoxia, remaining at this level after 7 days with no change in HOAD activity. Oxidative phosphorylation respiration rates using palmitoyl-carnitine were lower in skeletal muscle throughout hypoxia, while respiration using pyruvate remained unchanged. The rate of CO2 production from palmitate oxidation was significantly lower in both tissues throughout hypoxia. Thus cardiac muscle may remain reliant on fatty acids during sustained hypoxia, while skeletal muscle decreases fatty acid oxidation and maintains pyruvate oxidation.


Asunto(s)
Ácidos Grasos/metabolismo , Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Ácido Pirúvico/metabolismo , Adaptación Fisiológica , Animales , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Oxidación-Reducción
4.
Diabetes ; 64(2): 471-484, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25249574

RESUMEN

Inorganic nitrate was once considered an oxidation end product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach, we mechanistically defined that nitrate not only increases the expression of thermogenic genes in brown adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid ß-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious comorbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Because resulting beige/brite cells exhibit antiobesity and antidiabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Nitratos/metabolismo , Nitratos/farmacología , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Adipocitos Marrones/fisiología , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/fisiología , Tejido Adiposo Pardo , Animales , Células Cultivadas , GMP Cíclico , Proteínas Quinasas Dependientes de GMP Cíclico , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA