Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 15(8): 5110-5, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26120803

RESUMEN

We investigate the structural, electronic, and transport properties of substitutional defects in SiC-graphene by means of scanning tunneling microscopy and magnetotransport experiments. Using ion incorporation via ultralow energy ion implantation, the influence of different ion species (boron, nitrogen, and carbon) can directly be compared. While boron and nitrogen atoms lead to an effective doping of the graphene sheet and can reduce or raise the position of the Fermi level, respectively, (12)C(+) carbon ions are used to study possible defect creation by the bombardment. For low-temperature transport, the implantation leads to an increase in resistance and a decrease in mobility in contrast to undoped samples. For undoped samples, we observe in high magnetic fields a positive magnetoresistance that changes to negative for the doped samples, especially for (11)B(+)- and (12)C(+)-ions. We conclude that the conductivity of the graphene sheet is lowered by impurity atoms and especially by lattice defects, because they result in weak localization effects at low temperatures.

2.
Nat Commun ; 8: 15283, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28469282

RESUMEN

Transport experiments in strong magnetic fields show a variety of fascinating phenomena like the quantum Hall effect, weak localization or the giant magnetoresistance. Often they originate from the atomic-scale structure inaccessible to macroscopic magnetotransport experiments. To connect spatial information with transport properties, various advanced scanning probe methods have been developed. Capable of ultimate spatial resolution, scanning tunnelling potentiometry has been used to determine the resistance of atomic-scale defects such as steps and interfaces. Here we combine this technique with magnetic fields and thus transfer magnetotransport experiments to the atomic scale. Monitoring the local voltage drop in epitaxial graphene, we show how the magnetic field controls the electric field components. We find that scattering processes at localized defects are independent of the strong magnetic field while monolayer and bilayer graphene sheets show a locally varying conductivity and charge carrier concentration differing from the macroscopic average.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA