Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 38(3-4): 168-188, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38479840

RESUMEN

CTCF is crucial for chromatin structure and transcription regulation in early embryonic development. However, the kinetics of CTCF chromatin occupation in preimplantation embryos have remained unclear. In this study, we used CUT&RUN technology to investigate CTCF occupancy in mouse preimplantation development. Our findings revealed that CTCF begins binding to the genome prior to zygotic genome activation (ZGA), with a preference for CTCF-anchored chromatin loops. Although the majority of CTCF occupancy is consistently maintained, we identified a specific set of binding sites enriched in the mouse-specific short interspersed element (SINE) family B2 that are restricted to the cleavage stages. Notably, we discovered that the neuroprotective protein ADNP counteracts the stable association of CTCF at SINE B2-derived CTCF-binding sites. Knockout of Adnp in the zygote led to impaired CTCF binding signal recovery, failed deposition of H3K9me3, and transcriptional derepression of SINE B2 during the morula-to-blastocyst transition, which further led to unfaithful cell differentiation in embryos around implantation. Our analysis highlights an ADNP-dependent restriction of CTCF binding during cell differentiation in preimplantation embryos. Furthermore, our findings shed light on the functional importance of transposable elements (TEs) in promoting genetic innovation and actively shaping the early embryo developmental process specific to mammals.


Asunto(s)
Cromatina , Desarrollo Embrionario , Animales , Ratones , Sitios de Unión , Blastocisto/metabolismo , Cromatina/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Mamíferos , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Cigoto/metabolismo
2.
J Cell Physiol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747637

RESUMEN

Critical reprogramming factors resided predominantly in the oocyte or male pronucleus can enhance the efficiency or the quality of induced pluripotent stem cells (iPSCs) induction. However, few reprogramming factors exist in the male pronucleus had been verified. Here, we demonstrated that granulin (Grn), a factor enriched specifically in male pronucleus, can significantly improve the generation of iPSCs from mouse fibroblasts. Grn is highly expressed on Day 1, Day 3, Day 14 of reprogramming induced by four Yamanaka factors and functions at the initial stage of reprogramming. Transcriptome analysis indicates that Grn can promote the expression of lysosome-related genes, while inhibit the expression of genes involved in DNA replication and cell cycle at the early reprogramming stage. Further verification determined that Grn suppressed cell proliferation due to the arrest of cell cycle at G2/M phase. Moreover, ectopic Grn can enhance the lysosomes abundance and rescue the efficiency reduction of reprogramming resulted from lysosomal protease inhibition. Taken together, we conclude that Grn serves as an activator for somatic cell reprogramming through mitigating cell hyperproliferation and promoting the function of lysosomes.

3.
Cell Mol Life Sci ; 80(8): 218, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37470863

RESUMEN

BACKGROUND: Abundantly expressed factors in the oocyte cytoplasm can remarkably reprogram terminally differentiated germ cells or somatic cells into totipotent state within a short time. However, the mechanism of the different factors underlying the reprogramming process remains uncertain. METHODS: On the basis of Yamanaka factors OSKM induction method, MEF cells were induced and reprogrammed into iPSCs under conditions of the oocyte-derived factor Wdr82 overexpression and/or knockdown, so as to assess the reprogramming efficiency. Meanwhile, the cellular metabolism was monitored and evaluated during the reprogramming process. The plurpotency of the generated iPSCs was confirmed via pluripotent gene expression detection, embryoid body differentiation and chimeric mouse experiment. RESULTS: Here, we show that the oocyte-derived factor Wdr82 promotes the efficiency of MEF reprogramming into iPSCs to a greater degree than the Yamanaka factors OSKM. The Wdr82-expressing iPSC line showed pluripotency to differentiate and transmit genetic material to chimeric offsprings. In contrast, the knocking down of Wdr82 can significantly reduce the efficiency of somatic cell reprogramming. We further demonstrate that the significant suppression of oxidative phosphorylation in mitochondria underlies the molecular mechanism by which Wdr82 promotes the efficiency of somatic cell reprogramming. Our study suggests a link between mitochondrial energy metabolism remodeling and cell fate transition or stem cell function maintenance, which might shed light on the embryonic development and stem cell biology.


Asunto(s)
Proteínas Cromosómicas no Histona , Células Madre Pluripotentes Inducidas , Animales , Ratones , Diferenciación Celular/genética , Reprogramación Celular/genética , Glucólisis/genética , Mitocondrias/metabolismo , Fosforilación Oxidativa , Repeticiones WD40 , Proteínas Cromosómicas no Histona/genética
4.
J Pineal Res ; 72(1): e12778, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34726796

RESUMEN

Increasing evidence suggests that in vitro fertilization (IVF) may be associated with an increased risk of developing obesity and metabolic diseases later in life in the offspring. Notably, the addition of melatonin to culture medium may improve embryo development and prevent cardiovascular dysfunction in IVF adult mice. This study aimed to determine if melatonin supplementation in the culture medium can reverse impaired glucose metabolism in IVF mice offspring and the underlying mechanisms. Blastocysts used for transfer were generated by natural mating (control group) or IVF with or without melatonin (10-6  M) supplementation (mIVF and IVF group, respectively) in clinical-grade culture media. Here, we first report that IVF decreased hepatic expression of Fbxl7, which was associated with impaired glucose metabolism in mice offspring. Melatonin addition reversed the phenotype by up-regulating the expression of hepatic Fbxl7. In vitro experiments showed that Fbxl7 enhanced the insulin signaling pathway by degrading RhoA through ubiquitination and was up-regulated by transcription factor Foxa2. Specific knockout of Fbxl7 in the liver of adult mice, through tail intravenous injection of recombinant adeno-associated virus, impaired glucose tolerance, while overexpression of hepatic Fbxl7 significantly improved glucose tolerance in adult IVF mice. Thus, the data suggest that Fbxl7 plays an important role in maintaining glucose metabolism of mice, and melatonin supplementation in the culture medium may rescue the long-term risk of metabolic diseases in IVF offspring.


Asunto(s)
Melatonina , Animales , Blastocisto , Medios de Cultivo , Suplementos Dietéticos , Fertilización In Vitro , Glucosa , Melatonina/farmacología , Ratones
5.
Nature ; 537(7621): 558-562, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27626379

RESUMEN

Histone modifications have critical roles in regulating the expression of developmental genes during embryo development in mammals. However, genome-wide analyses of histone modifications in pre-implantation embryos have been impeded by the scarcity of the required materials. Here, by using a small-scale chromatin immunoprecipitation followed by sequencing (ChIP-seq) method, we map the genome-wide profiles of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3), which are associated with gene activation and repression, respectively, in mouse pre-implantation embryos. We find that the re-establishment of H3K4me3, especially on promoter regions, occurs much more rapidly than that of H3K27me3 following fertilization, which is consistent with the major wave of zygotic genome activation at the two-cell stage. Furthermore, H3K4me3 and H3K27me3 possess distinct features of sequence preference and dynamics in pre-implantation embryos. Although H3K4me3 modifications occur consistently at transcription start sites, the breadth of the H3K4me3 domain is a highly dynamic feature. Notably, the broad H3K4me3 domain (wider than 5 kb) is associated with higher transcription activity and cell identity not only in pre-implantation development but also in the process of deriving embryonic stem cells from the inner cell mass and trophoblast stem cells from the trophectoderm. Compared to embryonic stem cells, we found that the bivalency (that is, co-occurrence of H3K4me3 and H3K27me3) in early embryos is relatively infrequent and unstable. Taken together, our results provide a genome-wide map of H3K4me3 and H3K27me3 modifications in pre-implantation embryos, facilitating further exploration of the mechanism for epigenetic regulation in early embryos.


Asunto(s)
Blastocisto/metabolismo , Cromatina/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Regiones Promotoras Genéticas , Cigoto/metabolismo , Animales , Cromatina/genética , Inmunoprecipitación de Cromatina , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Femenino , Fertilización , Genoma/genética , Masculino , Metilación , Ratones , Sitio de Iniciación de la Transcripción
6.
Nature ; 537(7621): 553-557, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27626382

RESUMEN

Histone modifications are fundamental epigenetic regulators that control many crucial cellular processes. However, whether these marks can be passed on from mammalian gametes to the next generation is a long-standing question that remains unanswered. Here, by developing a highly sensitive approach, STAR ChIP-seq, we provide a panoramic view of the landscape of H3K4me3, a histone hallmark for transcription initiation, from developing gametes to post-implantation embryos. We find that upon fertilization, extensive reprogramming occurs on the paternal genome, as H3K4me3 peaks are depleted in zygotes but are readily observed after major zygotic genome activation at the late two-cell stage. On the maternal genome, we unexpectedly find a non-canonical form of H3K4me3 (ncH3K4me3) in full-grown and mature oocytes, which exists as broad peaks at promoters and a large number of distal loci. Such broad H3K4me3 peaks are in contrast to the typical sharp H3K4me3 peaks restricted to CpG-rich regions of promoters. Notably, ncH3K4me3 in oocytes overlaps almost exclusively with partially methylated DNA domains. It is then inherited in pre-implantation embryos, before being erased in the late two-cell embryos, when canonical H3K4me3 starts to be established. The removal of ncH3K4me3 requires zygotic transcription but is independent of DNA replication-mediated passive dilution. Finally, downregulation of H3K4me3 in full-grown oocytes by overexpression of the H3K4me3 demethylase KDM5B is associated with defects in genome silencing. Taken together, these data unveil inheritance and highly dynamic reprogramming of the epigenome in early mammalian development.


Asunto(s)
Alelos , Metilación de ADN , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Silenciador del Gen , Histonas/metabolismo , Lisina/metabolismo , Animales , Reprogramación Celular/genética , Inmunoprecipitación de Cromatina , Islas de CpG/genética , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Femenino , Fertilización/genética , Genoma/genética , Histonas/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Metilación , Ratones , Oocitos/metabolismo , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Iniciación de la Transcripción Genética , Cigoto/metabolismo
7.
J Am Chem Soc ; 141(22): 8694-8697, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31117646

RESUMEN

5-Hydroxymethylcytosine (5hmC) arises from the oxidation of 5-methylcytosine (5mC) by Fe2+ and 2-oxoglutarate-dependent 10-11 translocation (TET) family proteins. Substantial levels of 5hmC accumulate in many mammalian tissues, especially in neurons and embryonic stem cells, suggesting a potential active role for 5hmC in epigenetic regulation beyond being simply an intermediate of active DNA demethylation. 5mC and 5hmC undergo dynamic changes during embryogenesis, neurogenesis, hematopoietic development, and oncogenesis. While methods have been developed to map 5hmC, more efficient approaches to detect 5hmC at base resolution are still highly desirable. Herein, we present a new method, Jump-seq, to capture and amplify 5hmC in genomic DNA. The principle of this method is to label 5hmC by the 6- N3-glucose moiety and connect a hairpin DNA oligonucleotide carrying an alkyne group to the azide-modified 5hmC via Huisgen cycloaddition (click) chemistry. Primer extension starts from the hairpin motif to the modified 5hmC site and then continues to "land" on genomic DNA. 5hmC sites are inferred from genomic DNA sequences immediately spanning the 5-prime junction. This technology was validated, and its utility in 5hmC identification was confirmed.


Asunto(s)
5-Metilcitosina/análogos & derivados , Genómica , 5-Metilcitosina/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Técnicas de Amplificación de Ácido Nucleico
8.
J Biol Chem ; 292(5): 1798-1807, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28031467

RESUMEN

Sall4 (Splat-like 4) plays important roles in maintaining pluripotency of embryonic stem cells and in various developmental processes. Here, we find that Sall4 is highly expressed in oocytes and early embryos. To investigate the roles of SALL4 in oogenesis, we generated Sall4 maternal specific knock-out mice by using CRISPR/Cas9 system, and we find that the maternal deletion of Sall4 causes developmental arrest of oocytes at germinal vesicle stage with non-surrounded nucleus, and the subsequent meiosis resumption is prohibited. We further discover that the loss of maternal Sall4 causes failure in establishment of DNA methylation in oocytes. Furthermore, we find that Sall4 modulates H3K4me3 and H3K27me3 modifications by regulating the expression of key histone demethylases coding genes Kdm5b, Kdm6a, and Kdm6b in oocytes. Moreover, we demonstrate that the aberrant H3K4me3 and H3K27me3 cause mis-expression of genes that are critical for oocytes maturation and meiosis resumption. Taken together, our study explores a pivotal role of Sall4 in regulating epigenetic maturation of mouse oocytes.


Asunto(s)
Metilación de ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética/fisiología , Meiosis/fisiología , Oocitos/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Femenino , Histona Demetilasas/biosíntesis , Histona Demetilasas/genética , Histona Demetilasas con Dominio de Jumonji/biosíntesis , Histona Demetilasas con Dominio de Jumonji/genética , Ratones , Ratones Noqueados , Oocitos/citología , Factores de Transcripción/genética
9.
Hum Genet ; 136(8): 975-985, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28646452

RESUMEN

The zona pellucida (ZP) is an extracellular matrix universally surrounding mammalian eggs, which is essential for oogenesis, fertilization, and pre-implantation embryo development. Here, we identified two novel heritable mutations of ZP2 and ZP3, both occurring in an infertile female patient with ZP-abnormal eggs. Mouse models with the same mutations were generated by CRISPR/Cas9 gene editing system, and oocytes obtained from female mice with either single heterozygous mutation showed approximately half of the normal ZP thickness compared to wild-type oocytes. Importantly, oocytes with both heterozygous mutations showed a much thinner or even missing ZP that could not avoid polyspermy fertilization, following the patient's pedigree. Further analysis confirmed that precursor proteins produced from either mutated ZP2 or ZP3 could not anchor to oocyte membranes. From these, we conclude that ZP mutations have dosage effects which can cause female infertility in humans. Finally, this patient was treated by intracytoplasmic sperm injection (ICSI) with an improved culture system and successfully delivered a healthy baby.


Asunto(s)
Dosificación de Gen , Infertilidad Femenina/genética , Glicoproteínas de la Zona Pelúcida/genética , Adulto , Animales , Modelos Animales de Enfermedad , Femenino , Variación Genética , Células HeLa , Heterocigoto , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Oocitos/metabolismo , Linaje , ARN Mensajero/genética , ARN Mensajero/metabolismo , Inyecciones de Esperma Intracitoplasmáticas , Glicoproteínas de la Zona Pelúcida/metabolismo
10.
FASEB J ; 29(5): 1986-98, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25667220

RESUMEN

Inhaled xenobiotics such as tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone are mainly metabolized by phase I oxidase cytochrome P450, family 2, subfamily A, polypeptide 13 (CYP2A13), phase II conjugate UDP glucuronosyltransferase 2 family, polypeptide B17 (UGT2B17), and phase III transporter ATP-binding cassette, subfamily B (MDR/TAP), member 1 (ABCB1), with genetic polymorphisms implicated in lung cancer. Their genetic interaction and pulmonary expression regulation are largely unknown. We analyzed joint association for CYP2A13 and ABCB1 polymorphisms in 2 independent lung cancer case populations (669 and 566 patients) and 1 common control population (749 subjects), and characterized the trans-acting function of the lung development-related transcription factor forkhead box A2 (FOXA2). We undertook FOXA2 overexpression and down-regulation in lung epithelial cell lines, analyzed functional impact on the transactivation of CYP2A13, UGT2B17, and ABCB1, and measured correlation for their expressions in lung tissues. We found a substantial reduction in cancer risk (OR 0.39; 95% CI 0.25-0.61; Pinteraction = 0.029) associated with combined genotypes for CYP2A13 R257C and a functionary regulatory variant in the cis element of ABCB1 synergistically targeted by GATA binding protein 6 and FOXA2. Genetic manipulation of FOXA2 consistently influenced its binding to and transactivation of the promoters of CYP2A13, UGT2B17, and ABCB1, whose mRNA and protein expressions were all consistently correlated with those of FOXA2 in both tumorous and normal lung tissues. We therefore establish FOXA2 as a core transcriptional modulator for pulmonary xenobiotic metabolic pathways and uncover an etiologically relevant interaction between CYP2A13 and ABCB1, furthering our understanding of expression and function of the xenobiotic metabolism system.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Glucuronosiltransferasa/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Neoplasias Pulmonares/genética , Pulmón/metabolismo , Polimorfismo Genético/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Hidrocarburo de Aril Hidroxilasas/metabolismo , Estudios de Casos y Controles , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica , Glucuronosiltransferasa/metabolismo , Humanos , Técnicas para Inmunoenzimas , Neoplasias Pulmonares/metabolismo , Antígenos de Histocompatibilidad Menor , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Matrices Tisulares , Activación Transcripcional , Células Tumorales Cultivadas
11.
Stem Cells ; 32(10): 2642-56, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24965076

RESUMEN

Although the reactivation of silenced X chromosomes has been observed as part of the process of reprogramming female somatic cells into induced pluripotent stem cells (iPSCs), it remains unknown whether repression of the X-inactive specific transcript (Xist) can greatly enhance female iPSC induction similar to that observed in somatic cell nuclear transfer studies. In this study, we discovered that the repression of Xist plays opposite roles in the early and late phases of female iPSCs induction. Our results demonstrate that the downregulation of Xist by an isopropyl ß-d-1-thiogalactopyranoside (IPTG)-inducible short hairpin RNA (shRNA) system can greatly impair the mesenchymal-to-epithelial transition (MET) in the early phase of iPSC induction but can significantly promote the transition of pre-iPSCs to iPSCs in the late phase. Furthermore, we demonstrate that although the knockdown of Xist did not affect the H3K27me3 modification on the X chromosome, macroH2A was released from the inactivated X chromosome (Xi). This enables the X chromosome silencing to be a reversible event. Moreover, we demonstrate that the supplementation of vitamin C (Vc) can augment and stabilize the reversible X chromosome by preventing the relocalization of macroH2A to the Xi. Therefore, our study reveals an opposite role of Xist repression in the early and late stages of reprogramming female somatic cells to pluripotency and demonstrates that the release of macroH2A by Xist repression enables the transition from pre-iPSCs to iPSCs.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Ácido Ascórbico/farmacología , Reprogramación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Masculino , Ratones , Factores de Tiempo , Cromosoma X/genética , Inactivación del Cromosoma X/efectos de los fármacos
12.
BMC Biol ; 12: 109, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25528259

RESUMEN

BACKGROUND: Nucleosome organization determines the chromatin state, which in turn controls gene expression or silencing. Nucleosome remodeling occurs during somatic cell reprogramming, but it is still unclear to what degree the re-established nucleosome organization of induced pluripotent stem cells (iPSCs) resembles embryonic stem cells (ESCs), and whether the iPSCs inherit some residual gene expression from the parental fibroblast cells. RESULTS: We generated genome-wide nucleosome maps in mouse ESCs and in iPSCs reprogrammed from somatic cells belonging to three different germ layers using a secondary reprogramming system. Pairwise comparisons showed that the nucleosome organizations in the iPSCs, regardless of the iPSCs' tissue of origin, were nearly identical to the ESCs, but distinct from mouse embryonic fibroblasts (MEF). There is a canonical nucleosome arrangement of -1, nucleosome depletion region, +1, +2, +3, and so on nucleosomes around the transcription start sites of active genes whereas only a nucleosome occupies silent transcriptional units. Transcription factor binding sites possessed characteristic nucleosomal architecture, such that their access was governed by the rotational and translational settings of the nucleosome. Interestingly, the tissue-specific genes were highly expressed only in the parental somatic cells of the corresponding iPS cell line before reprogramming, but had a similar expression level in all the resultant iPSCs and ESCs. CONCLUSIONS: The re-established nucleosome landscape during nuclear reprogramming provides a conserved setting for accessibility of DNA sequences in mouse pluripotent stem cells. No persistent residual expression program or nucleosome positioning of the parental somatic cells that reflected their tissue of origin was passed on to the resulting mouse iPSCs.


Asunto(s)
Estratos Germinativos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Nucleosomas/metabolismo , Animales , Células Cultivadas , Reprogramación Celular , Células Madre Embrionarias/metabolismo , Fibroblastos , Expresión Génica , Ratones , Análisis de Secuencia de ADN , Transcriptoma
13.
Sci China Life Sci ; 67(5): 958-969, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38305985

RESUMEN

Vertebrate life begins with fertilization, and then the zygote genome is activated after transient silencing, a process termed zygotic genome activation (ZGA). Despite its fundamental role in totipotency and the initiation of life, the precise mechanism underlying ZGA initiation remains unclear. The existence of minor ZGA implies the possible critical role of noncoding RNAs in the initiation of ZGA. Here, we delineate the expression profile of long noncoding RNAs (lncRNAs) in early mouse embryonic development and elucidate their critical role in minor ZGA. Compared with protein-coding genes (PCGs), lncRNAs exhibit a stronger correlation with minor ZGA. Distinct H3K9me3 profiles can be observed between lncRNA genes and PCGs, and the enrichment of H3K9me3 before ZGA might explain the suspended expression of major ZGA-related PCGs despite possessing PolII pre-configuration. Furthermore, we identified the presence of PolII-enriched MuERV-L around the transcriptional start site of minor ZGA-related lncRNAs, and these repeats are responsible for the activation of minor ZGA-related lncRNAs and subsequent embryo development. Our study suggests that MuERV-L mediates minor ZGA lncRNA activation as a critical driver between epigenetic reprogramming triggered by fertilization and the embryo developmental program, thus providing clues for understanding the regulatory mechanism of totipotency and establishing bona fide totipotent stem cells.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Genoma , ARN Largo no Codificante , Cigoto , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cigoto/metabolismo , Ratones , Desarrollo Embrionario/genética , Genoma/genética , Femenino , Histonas/metabolismo , Epigénesis Genética , Embrión de Mamíferos/metabolismo
14.
Stem Cell Res Ther ; 15(1): 64, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38438896

RESUMEN

BACKGROUND: Premature ovarian failure (POF) has a profound impact on female reproductive and psychological health. In recent years, the transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) has demonstrated unprecedented potential in the treatment of POF. However, the heterogeneity of human UC-MSCs remains a challenge for their large-scale clinical application. Therefore, it is imperative to identify specific subpopulations within UC-MSCs that possess the capability to improve ovarian function, with the aim of reducing the uncertainty arising from the heterogeneity while achieving more effective treatment of POF. METHODS: 10 × Genomics was performed to investigate the heterogeneity of human UC-MSCs. We used LRP1 as a marker and distinguished the potential therapeutic subpopulation by flow cytometry, and determined its secretory functions. Unsorted UC-MSCs, LRP1high and LRP1low subpopulation was transplanted under the ovarian capsules of aged mice and CTX-induced POF mice, and therapeutic effects was evaluated by assessing hormone levels, estrous cycles, follicle counts, and embryo numbers. RNA sequencing on mouse oocytes and granulosa cells after transplantation was performed to explore the mechanism of LRP1high subpopulation on mouse oocytes and granulosa cells. RESULTS: We identified three distinct functional subtypes, including mesenchymal stem cells, multilymphoid progenitor cells and trophoblasts. Additionally, we identified the LRP1high subpopulation, which improved ovarian function in aged and POF mice. We elucidated the unique secretory functions of the LRP1high subpopulation, capable of secreting various chemokines, cytokines, and growth factors. Furthermore, LRP1 plays a crucial role in regulating the ovarian microenvironment, including tissue repair and extracellular matrix remodeling. Consistent with its functions, the transcriptomes of oocytes and granulosa cells after transplantation revealed that the LRP1high subpopulation improves ovarian function by modulating the extracellular matrix of oocytes, NAD metabolism, and mitochondrial function in granulosa cells. CONCLUSION: Through exploration of the heterogeneity of UC-MSCs, we identified the LRP1high subpopulation capable of improving ovarian function in aged and POF mice by secreting various factors and remodeling the extracellular matrix. This study provides new insights into the targeted exploration of human UC-MSCs in the precise treatment of POF.


Asunto(s)
Células Madre Mesenquimatosas , Insuficiencia Ovárica Primaria , Humanos , Femenino , Animales , Ratones , Anciano , Insuficiencia Ovárica Primaria/terapia , Oocitos , Células Madre , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética
15.
Cell Rep ; 43(5): 114136, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38643480

RESUMEN

Embryos, originating from fertilized eggs, undergo continuous cell division and differentiation, accompanied by dramatic changes in transcription, translation, and metabolism. Chromatin regulators, including transcription factors (TFs), play indispensable roles in regulating these processes. Recently, the trophoblast regulator TFAP2C was identified as crucial in initiating early cell fate decisions. However, Tfap2c transcripts persist in both the inner cell mass and trophectoderm of blastocysts, prompting inquiry into Tfap2c's function in post-lineage establishment. In this study, we delineate the dynamics of TFAP2C during the mouse peri-implantation stage and elucidate its collaboration with the key lineage regulators CDX2 and NANOG. Importantly, we propose that de novo formation of H3K9me3 in the extraembryonic ectoderm during implantation antagonizes TFAP2C binding to crucial developmental genes, thereby maintaining its lineage identity. Together, these results highlight the plasticity of the chromatin environment in designating the genomic binding of highly adaptable lineage-specific TFs and regulating embryonic cell fates.


Asunto(s)
Factor de Transcripción CDX2 , Linaje de la Célula , Cromatina , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción AP-2 , Animales , Cromatina/metabolismo , Ratones , Linaje de la Célula/genética , Factor de Transcripción AP-2/metabolismo , Factor de Transcripción AP-2/genética , Factor de Transcripción CDX2/metabolismo , Factor de Transcripción CDX2/genética , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Blastocisto/metabolismo , Blastocisto/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Femenino , Histonas/metabolismo , Diferenciación Celular/genética , Ectodermo/metabolismo , Ectodermo/citología , Desarrollo Embrionario/genética
16.
Dev Cell ; 59(9): 1146-1158.e6, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38574734

RESUMEN

Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.


Asunto(s)
Implantación del Embrión , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción AP-2 , Factores de Transcripción , Animales , Femenino , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Implantación del Embrión/genética , Desarrollo Embrionario/genética , Redes Reguladoras de Genes , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción de Dominio TEA/metabolismo , Factor de Transcripción AP-2/metabolismo , Factor de Transcripción AP-2/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Tretinoina/metabolismo
17.
Nat Commun ; 14(1): 957, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810573

RESUMEN

Epigenetic reprogramming of the parental genome is essential for zygotic genome activation and subsequent embryo development in mammals. Asymmetric incorporation of histone H3 variants into the parental genome has been observed previously, but the underlying mechanism remains elusive. In this study, we discover that RNA-binding protein LSM1-mediated major satellite RNA decay plays a central role in the preferential incorporation of histone variant H3.3 into the male pronucleus. Knockdown of Lsm1 disrupts nonequilibrium pronucleus histone incorporation and asymmetric H3K9me3 modification. Subsequently, we find that LSM1 mainly targets major satellite repeat RNA (MajSat RNA) for decay and that accumulated MajSat RNA in Lsm1-depleted oocytes leads to abnormal incorporation of H3.1 into the male pronucleus. Knockdown of MajSat RNA reverses the anomalous histone incorporation and modifications in Lsm1-knockdown zygotes. Our study therefore reveals that accurate histone variant incorporation and incidental modifications in parental pronuclei are specified by LSM1-dependent pericentromeric RNA decay.


Asunto(s)
Núcleo Celular , Histonas , Animales , Masculino , Histonas/metabolismo , Núcleo Celular/metabolismo , Desarrollo Embrionario/genética , Cigoto/metabolismo , Estabilidad del ARN , ARN/metabolismo , Mamíferos/genética
18.
Natl Sci Rev ; 10(9): nwad173, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37593113

RESUMEN

Somatic cell nuclear transfer (SCNT) can reprogram differentiated somatic cells into totipotency. Although pre-implantation development of SCNT embryos has greatly improved, most SCNT blastocysts are still arrested at the peri-implantation stage, and the underlying mechanism remains elusive. Here, we develop a 3D in vitro culture system for SCNT peri-implantation embryos and discover that persistent Wnt signals block the naïve-to-primed pluripotency transition of epiblasts with aberrant H3K27me3 occupancy, which in turn leads to defects in epiblast transformation events and subsequent implantation failure. Strikingly, manipulating Wnt signals can attenuate the pluripotency transition and H3K27me3 deposition defects in epiblasts and achieve up to a 9-fold increase in cloning efficiency. Finally, single-cell RNA-seq analysis reveals that Wnt inhibition markedly enhances the lineage developmental trajectories of SCNT blastocysts during peri-implantation development. Overall, these findings reveal diminished potentials of SCNT blastocysts for lineage specification and validate a critical peri-implantation barrier for SCNT embryos.

19.
Nat Commun ; 14(1): 4807, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558707

RESUMEN

Somatic cell nuclear transfer (SCNT) can be used to reprogram differentiated somatic cells to a totipotent state but has poor efficiency in supporting full-term development. H3K9me3 is considered to be an epigenetic barrier to zygotic genomic activation in 2-cell SCNT embryos. However, the mechanism underlying the failure of H3K9me3 reprogramming during SCNT embryo development remains elusive. Here, we perform genome-wide profiling of H3K9me3 in cumulus cell-derived SCNT embryos. We find redundant H3K9me3 marks are closely related to defective minor zygotic genome activation. Moreover, SCNT blastocysts show severely indistinct lineage-specific H3K9me3 deposition. We identify MAX and MCRS1 as potential H3K9me3-related transcription factors and are essential for early embryogenesis. Overexpression of Max and Mcrs1 significantly benefits SCNT embryo development. Notably, MCRS1 partially rescues lineage-specific H3K9me3 allocation, and further improves the efficiency of full-term development. Importantly, our data confirm the conservation of deficient H3K9me3 differentiation in Sertoli cell-derived SCNT embryos, which may be regulated by alternative mechanisms.


Asunto(s)
Histonas , Cigoto , Histonas/genética , Técnicas de Transferencia Nuclear , Desarrollo Embrionario/genética , Blastocisto , Embrión de Mamíferos , Reprogramación Celular/genética
20.
Nat Commun ; 14(1): 1838, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012254

RESUMEN

Farrerol, a natural flavanone, promotes homologous recombination (HR) repair to improve genome-editing efficiency, but the specific protein that farrerol directly targets to regulate HR repair and the underlying molecular mechanisms have not been determined. Here, we find that the deubiquitinase UCHL3 is the direct target of farrerol. Mechanistically, farrerol enhanced the deubiquitinase activity of UCHL3 to promote RAD51 deubiquitination, thereby improving HR repair. Importantly, we find that embryos of somatic cell nuclear transfer (SCNT) exhibited defective HR repair, increased genomic instability and aneuploidy, and that the farrerol treatment post nuclear transfer enhances HR repair, restores transcriptional and epigenetic network, and promotes SCNT embryo development. Ablating UCHL3 significantly attenuates farrerol-mediated stimulation in HR and SCNT embryo development. In summary, we identify farrerol as an activator of the deubiquitinase UCHL3, highlighted the importance of HR and epigenetic changes in SCNT reprogramming and provide a feasible method to promote SCNT efficiency.


Asunto(s)
Reparación del ADN , Técnicas de Transferencia Nuclear , Reprogramación Celular/genética , Enzimas Desubicuitinizantes/genética , Embrión de Mamíferos , Desarrollo Embrionario/genética , Epigénesis Genética , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA