Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Molecules ; 24(21)2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671554

RESUMEN

Trastuzumab is an antibody used for the treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancers. Since trastuzumab is an internalizing antibody, two factors could play an important role in achieving high uptake and prolonged retention of radioactivity in HER2-positive tumors after radioiodination-residualizing capacity after receptor-mediated internalization and susceptibility to dehalogenation. To evaluate the contribution of these two factors, trastuzumab was radiolabeled using the residualizing reagent N-succinimidyl 4-guanidinomethyl-3-[*I]iodobenzoate ([*I]SGMIB) and the nonresidualizing reagent N-succinimidyl-3-[*I]iodobenzoate ([*I]SIB), both of which are highly dehalogenation-resistant. Paired-label uptake and intracellular retention of [125I]SGMIB-trastuzumab and [131I]SIB-trastuzumab was compared on HER2-expressing BT474 human breast carcinoma cells. Tumor uptake and normal tissue distribution characteristics for the two labeled conjugates were assessed in mice bearing BT474M1 xenografts. The internalization and intracellular retention of initially-bound radioactivity in BT474 cells was similar for the two labeled conjugates up to 4 h, but were significantly higher for [125I]SGMIB-trastuzumab at 6 and 24 h. Similarly, [*I]SGMIB labeling resulted in significantly higher uptake and retention of radioactivity in BT474M1 xenografts at all studied time points. Moreover, tumor-to-tissue ratios for [125I]SGMIB-trastuzumab were consistently higher than those for [131I]SIB-trastuzumab starting at 12 h postinjection. Thus, optimal targeting of HER2-positive breast cancers with a radioiodinated trastuzumab conjugate requires an acylation agent that imparts residualizing capacity in addition to high stability towards dehalogenation in vivo.


Asunto(s)
Benzoatos/química , Guanidina/análogos & derivados , Halogenación , Radioisótopos de Yodo/química , Trastuzumab/uso terapéutico , Acilación , Animales , Línea Celular Tumoral , Guanidina/química , Humanos , Ratones , Control de Calidad , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Molecules ; 23(5)2018 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29783774

RESUMEN

The residualizing prosthetic agent Nε-(3-[*I]iodobenzoyl)-Lys5-Nα-maleimido-Gly¹-d-GEEEK ([*I]IB-Mal-d-GEEEK) showed promise for the radioiodination of monoclonal antibodies (mAbs) that bind to internalizing molecular targets. Although enhanced tumor uptake was achieved in these studies, elevated kidney accumulation also was observed, particularly with low-molecular-weight, single-domain antibody fragments (sdAbs). Here, we developed an analogous agent (IB-Mal-d-GDDDK), in which glutamate residues (E) were replaced with aspartates (D) to determine whether this modification could decrease renal uptake. [125I]IB-Mal-d-GDDDK and [131I]IB-Mal-d-GEEEK were synthesized with similar radiochemical yields (60⁻80%) and coupled to the anti-HER2 sdAb 5F7 at 50⁻60% efficiency. Paired-label internalization assays in vitro indicated similar levels of intracellular activity residualization in HER2-expressing BT474M1 cells for [125I]IB-Mal-d-GDDDK-5F7 and [131I]IB-Mal-d-GEEEK-5F7. A paired-label biodistribution comparison of the two labeled conjugates was performed in mice with HER2-expressing SKOV-3 xenografts, and the results of this study indicated that renal uptake at 1 h was 127.5 ± 18.7% ID/g and 271.4 ± 66.6% ID/g for [125I]IB-Mal-d-GDDDK-5F7 and [131I]IB-Mal-d-GEEEK-5F7, respectively. The tumor uptake of the two radioconjugates was not significantly different. These results demonstrate that substitution of E with D in the IB-Mal-d-GEEEK construct reduced kidney accumulation of the sdAb. However, renal activity levels need to be reduced further if d-amino acid derived prosthetic agents are to be of practical value for labeling low molecular weight biomolecules such as sdAbs.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Ácido Aspártico/química , Radioisótopos de Yodo/química , Oligopéptidos/síntesis química , Sustitución de Aminoácidos , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/química , Línea Celular Tumoral , Femenino , Ácido Glutámico/química , Humanos , Radioisótopos de Yodo/farmacocinética , Riñón/química , Ratones , Peso Molecular , Oligopéptidos/química , Oligopéptidos/farmacocinética , Radiofármacos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Org Biomol Chem ; 14(4): 1261-71, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26645790

RESUMEN

Residualizing labeling methods for internalizing peptides and proteins are designed to trap the radionuclide inside the cell after intracellular degradation of the biomolecule. The goal of this work was to develop a residualizing label for the (18)F-labeling of internalizing biomolecules based on a template used successfully for radioiodination. N-Succinimidyl 3-((4-(4-[(18)F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(bis-Boc-guanidinomethyl)benzoate ([(18)F]SFBTMGMB-Boc2) was synthesized by a click reaction of an azide precursor and [(18)F]fluorohexyne in 8.5 ± 2.8% average decay-corrected radiochemical yield (n = 15). An anti-HER2 nanobody 5F7 was labeled with (18)F using [(18)F]SFBTMGMB ([(18)F]RL-I), obtained by the deprotection of [(18)F]SFBTMGMB-Boc2, in 31.2 ± 6.7% (n = 5) conjugation efficiency. The labeled nanobody had a radiochemical purity of >95%, bound to HER2-expressing BT474M1 breast cancer cells with an affinity of 4.7 ± 0.9 nM, and had an immunoreactive fraction of 62-80%. In summary, a novel residualizing prosthetic agent for labeling biomolecules with (18)F has been developed. An anti-HER2 nanobody was labeled using this prosthetic group with retention of affinity and immunoreactivity to HER2.


Asunto(s)
Neoplasias de la Mama/metabolismo , Guanidinas/química , Radiofármacos/química , Receptor ErbB-2/metabolismo , Succinimidas/química , Neoplasias de la Mama/patología , Femenino , Guanidinas/síntesis química , Guanidinas/metabolismo , Humanos , Estructura Molecular , Radiofármacos/análisis , Radiofármacos/síntesis química , Radiofármacos/metabolismo , Receptor ErbB-2/biosíntesis , Receptor ErbB-2/química , Succinimidas/síntesis química , Succinimidas/metabolismo , Células Tumorales Cultivadas
4.
Nucl Med Biol ; 56: 10-20, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29031230

RESUMEN

INTRODUCTION: Derived from heavy chain only camelid antibodies, ~15-kDa single-domain antibody fragments (sdAbs) are an attractive platform for developing molecularly specific imaging probes and targeted radiotherapeutics. The rapid tumor accumulation and normal tissue clearance of sdAbs might be ideal for use with 211At, a 7.2-h half-life α-emitter, if appropriate labeling chemistry can be devised to trap 211At in cancer cells after sdAb binding. This study evaluated two reagents, [211At]SAGMB and iso-[211At]SAGMB, for this purpose. METHODS: [211At]SAGMB and iso-[211At]SAGMB, and their radioiodinated analogues [131I]SGMIB and iso-[131I]SGMIB, were synthesized by halodestannylation and reacted with the anti-HER2 sdAb 5F7. Radiochemical purity, immunoreactivity and binding affinity were determined. Paired-label internalization assays on HER2-expressing BT474M1 breast carcinoma cells directly compared [131I]SGMIB-5F7/[211At]SAGMB-5F7 and iso-[131I]SGMIB-5F7/iso-[211At]SAGMB-5F7 tandems. The biodistribution of the two tandems was evaluated in SCID mice with subcutaneous BT474M1 xenografts. RESULTS: Radiochemical yields for Boc2-iso-[211At]SAGMB and Boc2-[211At]SAGMB synthesis, and efficiencies for coupling of iso-[211At]SAGMB and [211At]SAGMB to 5F7 were similar, with radiochemical purities of [211At]SAGMB-5F7 and iso-[211At]SAGMB-5F7 >98%. iso-[211At]SAGMB-5F7 and [211At]SAGMB-5F7 had immunoreactive fractions >80% and HER2 binding affinities of less than 5 nM. Internalization assays demonstrated high intracellular trapping of radioactivity, with little difference observed between corresponding 211At- and 131I-labeled 5F7 conjugates. Higher BT474M1 intracellular retention was observed from 1-6 h for the iso-conjugates (iso-[211At]SAGMB-5F7, 74.3 ± 2.8%, vs. [211At]SAGMB-5F7, 63.7 ± 0.4% at 2 h) with the opposite behavior observed at 24 h. Peak tumor uptake for iso-[211At]SAGMB-5F7 was 23.4 ± 2.2% ID/g at 4 h, slightly lower than its radioiodinated counterpart, but significantly higher than observed with [211At]SAGMB-5F7. Except in kidneys and lungs, tumor-to-normal organ ratios for iso-[211At]SAGMB-5F7 were greater than 10:1 by 2 h, and significantly higher than those for [211At]SAGMB-5F7. CONCLUSION: These 211At-labeled sdAb conjugates, particularly iso-[211At]SAGMB-5F7, warrant further evaluation for targeted α-particle radiotherapy of HER2-expressing cancers.


Asunto(s)
Astato/farmacocinética , Neoplasias de la Mama/metabolismo , Radiofármacos/farmacocinética , Receptor ErbB-2/inmunología , Anticuerpos de Dominio Único/metabolismo , Animales , Femenino , Humanos , Ratones , Ratones SCID , Receptor ErbB-2/antagonistas & inhibidores , Distribución Tisular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Nucl Med ; 57(6): 967-73, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26912425

RESUMEN

UNLABELLED: The human growth factor receptor type 2 (HER2) is overexpressed in breast as well as other types of cancer. Immuno-PET, a noninvasive imaging procedure that could assess HER2 status in both primary and metastatic lesions simultaneously, could be a valuable tool for optimizing application of HER2-targeted therapies in individual patients. Herein, we have evaluated the tumor-targeting potential of the 5F7 anti-HER2 Nanobody (single-domain antibody fragment; ∼13 kDa) after (18)F labeling by 2 methods. METHODS: The 5F7 Nanobody was labeled with (18)F using the novel residualizing label N-succinimidyl 3-((4-(4-(18)F-fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ((18)F-SFBTMGMB; (18)F-RL-I) and also via the most commonly used (18)F protein-labeling prosthetic agent N-succinimidyl 3-(18)F-fluorobenzoate ((18)F-SFB). For comparison, 5F7 Nanobody was also labeled using the residualizing radioiodination agent N-succinimidyl 4-guanidinomethyl-3-(125)I-iodobenzoate ((125)I-SGMIB). Paired-label ((18)F/(125)I) internalization assays and biodistribution studies were performed on HER2-expressing BT474M1 breast carcinoma cells and in mice with BT474M1 subcutaneous xenografts, respectively. Small-animal PET/CT imaging of 5F7 Nanobody labeled using (18)F-RL-I also was performed. RESULTS: Internalization assays indicated that intracellularly retained radioactivity for (18)F-RL-I-5F7 was similar to that for coincubated (125)I-SGMIB-5F7, whereas that for (18)F-SFB-5F7 was lower than coincubated (125)I-SGMIB-5F7 and decreased with time. BT474M1 tumor uptake of (18)F-RL-I-5F7 was 28.97 ± 3.88 percentage injected dose per gram of tissue (%ID/g) at 1 h and 36.28 ± 14.10 %ID/g at 2 h, reduced by more than 90% on blocking with trastuzumab, indicating HER2 specificity of uptake, and was also 26%-28% higher (P < 0.05) than that of (18)F-SFB-5F7. At 2 h, the tumor-to-blood ratio for (18)F-RL-I-5F7 (47.4 ± 13.1) was significantly higher (P < 0.05) than for (18)F-SFB-5F7 (25.4 ± 10.3); however, kidney uptake was 28-36-fold higher for (18)F-RL-I-5F7. CONCLUSION: (18)F-RL-I-5F7 is a promising tracer for evaluating HER2 status by immuno-PET; however, in settings in which renal background is problematic, strategies for reducing its kidney uptake may be needed.


Asunto(s)
Radioisótopos de Flúor , Regulación Neoplásica de la Expresión Génica , Inmunoconjugados/inmunología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Receptor ErbB-2/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Marcaje Isotópico , Ratones , Distribución Tisular
6.
J Nucl Med ; 57(10): 1569-1575, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27230930

RESUMEN

Alpha-particle emitters have a high linear energy transfer and short range, offering the potential for treating micrometastases while sparing normal tissues. We developed a urea-based, 211At-labeled small molecule targeting prostate-specific membrane antigen (PSMA) for the treatment of micrometastases due to prostate cancer (PC). METHODS: PSMA-targeted (2S)-2-(3-(1-carboxy-5-(4-211At-astatobenzamido)pentyl)ureido)-pentanedioic acid (211At- 6: ) was synthesized. Cellular uptake and clonogenic survival were tested in PSMA-positive (PSMA+) PC3 PIP and PSMA-negative (PSMA-) PC3 flu human PC cells after 211At- 6: treatment. The antitumor efficacy of 211At- 6: was evaluated in mice bearing PSMA+ PC3 PIP and PSMA- PC3 flu flank xenografts at a 740-kBq dose and in mice bearing PSMA+, luciferase-expressing PC3-ML micrometastases. Biodistribution was determined in mice bearing PSMA+ PC3 PIP and PSMA- PC3 flu flank xenografts. Suborgan distribution was evaluated using α-camera images, and microscale dosimetry was modeled. Long-term toxicity was assessed in mice for 12 mo. RESULTS: 211At- 6: treatment resulted in PSMA-specific cellular uptake and decreased clonogenic survival in PSMA+ PC3 PIP cells and caused significant tumor growth delay in PSMA+ PC3 PIP flank tumors. Significantly improved survival was achieved in the newly developed PSMA+ micrometastatic PC model. Biodistribution showed uptake of 211At- 6: in PSMA+ PC3 PIP tumors and in kidneys. Microscale kidney dosimetry based on α-camera images and a nephron model revealed hot spots in the proximal renal tubules. Long-term toxicity studies confirmed that the dose-limiting toxicity was late radiation nephropathy. CONCLUSION: PSMA-targeted 211At- 6: α-particle radiotherapy yielded significantly improved survival in mice bearing PC micrometastases after systemic administration. 211At- 6: also showed uptake in renal proximal tubules resulting in late nephrotoxicity, highlighting the importance of long-term toxicity studies and microscale dosimetry.


Asunto(s)
Partículas alfa/uso terapéutico , Antígenos de Superficie/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Compuestos Organometálicos/metabolismo , Compuestos Organometálicos/uso terapéutico , Radiofármacos/metabolismo , Radiofármacos/uso terapéutico , Urea/análogos & derivados , Animales , Línea Celular Tumoral , Humanos , Riñón/metabolismo , Dosis Máxima Tolerada , Ratones , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacocinética , Radioquímica , Radiofármacos/química , Radiofármacos/farmacocinética , Distribución Tisular , Urea/química , Urea/metabolismo , Urea/farmacocinética , Urea/uso terapéutico
7.
Nucl Med Biol ; 42(1): 19-27, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25240914

RESUMEN

INTRODUCTION: Proteins that undergo receptor-mediated endocytosis are subject to lysosomal degradation, requiring radioiodination methods that minimize loss of radioactivity from tumor cells after this process occurs. To accomplish this, we developed the residualizing radioiodination agent N(ϵ)-(3-[(*)I]iodobenzoyl)-Lys(5)-N(α)-maleimido-Gly(1)-D-GEEEK (Mal-D-GEEEK-[(*)I]IB), which enhanced tumor uptake but also increased kidney activity and necessitates generation of sulfhydryl moieties on the protein. The purpose of the current study was to synthesize and evaluate a new D-amino acid based agent that might avoid these potential problems. METHODS: N(α)-(3-iodobenzoyl)-(5-succinimidyloxycarbonyl)-D-EEEG (NHS-IB-D-EEEG), which contains 3 D-glutamates to provide negative charge and a N-hydroxysuccinimide function to permit conjugation to unmodified proteins, and the corresponding tin precursor were produced by solid phase peptide synthesis and subsequent conjugation with appropriate reagents. Radioiodination of the anti-HER2 antibody trastuzumab using NHS-IB-D-EEEG and Mal-D-GEEEK-IB was compared. Paired-label internalization assays on BT474 breast carcinoma cells and biodistribution studies in athymic mice bearing BT474M1 xenografts were performed to evaluate the two radioiodinated D-peptide trastuzumab conjugates. RESULTS: NHS-[(131)I]IB-D-EEEG was produced in 53.8%±13.4% and conjugated to trastuzumab in 39.5%±7.6% yield. Paired-label internalization assays with trastuzumab-NHS-[(131)I]IB-D-EEEG and trastuzumab-Mal-D-GEEEK-[(125)I]IB demonstrated similar intracellular trapping for both conjugates at 1h ((131)I, 84.4%±6.1%; (125)I, 88.6%±5.2%) through 24h ((131)I, 60.7%±6.8%; (125)I, 64.9%±6.9%). In the biodistribution experiment, tumor uptake peaked at 48 h (trastuzumab-NHS-[(131)I]IB-D-EEEG, 29.8%±3.6%ID/g; trastuzumab-Mal-D-GEEEK-[(125)I]IB, 45.3%±5.3%ID/g) and was significantly higher for (125)I at all time points. In general, normal tissue levels were lower for trastuzumab-NHS-[(131)I]IB-D-EEEG, with the differences being greatest in kidneys ((131)I, 2.2%±0.4%ID/g; (125)I, 16.9%±2.8%ID/g at 144 h). CONCLUSION: NHS-[(131)I]IB-D-EEEG warrants further evaluation as a residualizing radioiodination agent for labeling internalizing antibodies/fragments, particularly for applications where excessive renal accumulation could be problematic.


Asunto(s)
Anticuerpos Monoclonales Humanizados/química , Oligopéptidos/química , Animales , Anticuerpos Monoclonales Humanizados/metabolismo , Anticuerpos Monoclonales Humanizados/farmacocinética , Transporte Biológico , Línea Celular Tumoral , Ésteres , Femenino , Humanos , Radioisótopos de Yodo/química , Marcaje Isotópico , Ratones , Oligopéptidos/síntesis química , Radioquímica , Trastuzumab
8.
Nucl Med Biol ; 42(8): 673-84, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25956997

RESUMEN

INTRODUCTION: Radioiodinated meta-iodobenzylguanidine (MIBG), a norepinephrine transporter (NET) substrate, has been extensively used as an imaging agent to study the pathophysiology of the heart and for the diagnosis and treatment of neuroendocrine tumors. The goal of this study was to develop an (18)F-labeled analogue of MIBG that like MIBG itself could be synthesized in a single radiochemical step. Towards this end, we designed 4-fluoropropoxy-3-iodobenzylguanidine (FPOIBG). METHODS: Standards of FPOIBG and 4-fluoropropoxy-3-bromobenzylguanidine (FPOBBG) as well as their tosylate precursors for labeling with (18)F, and a tin precursor for the preparation of radioiodinated FPOIBG were synthesized. Radiolabeled derivatives were synthesized by nucleophilic substitution and electrophilic iododestannylation from the corresponding precursors. Labeled compounds were evaluated for NET transporter recognition in in vitro assays using three NET-expressing cell lines and in biodistribution experiments in normal mice, with all studies performed in a paired-label format. Competitive inhibition of [(125)I]MIBG uptake by unlabeled benzylguanidine compounds was performed in UVW-NAT cell line to determine IC50 values. RESULTS: [(18)F]FPOIBG was synthesized from the corresponding tosylate precursor in 5.2 ± 0.5% (n = 6) overall radiochemical yields starting with aqueous fluoride in about 105 min. In a paired-label in vitro assay, the uptake of [(18)F]FPOIBG at 2h was 10.2 ± 1.5%, 39.6 ± 13.4%, and 13.3 ± 2.5%, in NET-expressing SK-N-SH, UVW-NAT, and SK-N-BE(2c) cells, respectively, while these values for [(125)I]MIBG were 57.3 ± 8.1%, 82.7 ± 8.9%, and 66.3 ± 3.6%. The specificity of uptake of both tracers was demonstrated by blocking with desipramine. The (125)I-labeled congener of FPOIBG gave similar results. On the other hand, [(18)F]FPOBBG, a compound recently reported in the literature, demonstrated much higher uptake, albeit less than that of co-incubated [(125)I]MIBG. IC50 values for FPOIBG were higher than those obtained for MIBG and FPOBBG. Unlike the case with [(18)F]FPOBBG, the heart uptake [(18)F]FPOIBG in normal mice was significantly lower than that of MIBG. CONCLUSION: Although [(18)F]FPOIBG does not appear to warrant further consideration as an (18)F-labeled MIBG analogue, analogues wherein the iodine in it is replaced with a chlorine, fluorine or hydrogen might be worth pursuing. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: An (18)F-labeled analogue of the well-known radiopharmaceutical MIBG could have significant impact, potentially improving imaging of NET related disease in cardiology and in the imaging of neuroendocrine tumors. Although (18)F-labeled analogues of MIBG have been reported including LMI1195, we undertook this work hypothesizing that based on its greater structural similarity to MIBG, FPOIBG might be a better analogue than LMI1195.


Asunto(s)
3-Yodobencilguanidina/química , Glioma/diagnóstico por imagen , Guanidinas/síntesis química , Guanidinas/farmacocinética , Yodobencenos/síntesis química , Yodobencenos/farmacocinética , Neuroblastoma/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Animales , Autorradiografía , Radioisótopos de Flúor/farmacocinética , Glioma/metabolismo , Marcaje Isotópico , Tasa de Depuración Metabólica , Ratones , Ratones Endogámicos BALB C , Neuroblastoma/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Distribución Tisular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Nucl Med ; 55(4): 650-6, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24578241

RESUMEN

UNLABELLED: Nanobodies are approximately 15-kDa proteins based on the smallest functional fragments of naturally occurring heavy chain-only antibodies and represent an attractive platform for the development of molecularly targeted agents for cancer diagnosis and therapy. Because the human epidermal growth factor receptor type 2 (HER2) is overexpressed in breast and ovarian carcinoma, as well as in other malignancies, HER2-specific Nanobodies may be valuable radiodiagnostics and therapeutics for these diseases. The aim of the present study was to evaluate the tumor-targeting potential of anti-HER2 5F7GGC Nanobody after radioiodination with the residualizing agent N-succinimidyl 4-guanidinomethyl 3-(125/131)I-iodobenzoate (*I-SGMIB). METHODS: The 5F7GGC Nanobody was radiolabeled using *I-SGMIB and, for comparison, with N(ε)-(3-*I-iodobenzoyl)-Lys(5)-N(α)-maleimido-Gly(1)-GEEEK (*I-IB-Mal-d-GEEEK), another residualizing agent, and by direct radioiodination using IODO-GEN ((125)I-Nanobody). The 3 labeled Nanobodies were evaluated in affinity measurements, and paired-label internalization assays were performed on HER2-expressing BT474M1 breast carcinoma cells and in paired-label tissue distribution measurements in mice bearing subcutaneous BT474M1 xenografts. RESULTS: *I-SGMIB-Nanobody was produced in 50.4% ± 3.6% radiochemical yield and exhibited a dissociation constant of 1.5 ± 0.5 nM. Internalization assays demonstrated that intracellular retention of radioactivity was up to 1.5-fold higher for *I-SGMIB-Nanobody than for coincubated (125)I-Nanobody or *I-IB-Mal-d-GEEEK-Nanobody. Peak tumor uptake for *I-SGMIB-Nanobody was 24.50% ± 9.89% injected dose/g at 2 h, 2- to 4-fold higher than observed with other labeling methods, and was reduced by 90% with trastuzumab blocking, confirming the HER2 specificity of localization. Moreover, normal-organ clearance was fastest for *I-SGMIB-Nanobody, such that tumor-to-normal-organ ratios greater than 50:1 were reached by 24 h in all tissues except lungs and kidneys, for which the values were 10.4 ± 4.5 and 5.2 ± 1.5, respectively. CONCLUSION: Labeling anti-HER2 Nanobody 5F7GGC with *I-SGMIB yields a promising new conjugate for targeting HER2-expressing malignancies. Further research is needed to determine the potential utility of *I-SGMIB-5F7GGC labeled with (124)I, (123)I, and (131)I for PET and SPECT imaging and for targeted radiotherapy, respectively.


Asunto(s)
Benzoatos , Guanidina/análogos & derivados , Radiofármacos , Receptor ErbB-2/metabolismo , Anticuerpos de Dominio Único/metabolismo , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , Benzoatos/síntesis química , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Femenino , Guanidina/síntesis química , Humanos , Marcaje Isotópico , Ratones , Ratones Desnudos , Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Trastuzumab , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Nucl Med Biol ; 41(10): 802-12, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25156548

RESUMEN

INTRODUCTION: N-succinimidyl 4-guanidinomethyl-3-[(*)I]iodobenzoate ([(*)I]SGMIB) has shown promise for the radioiodination of monoclonal antibodies (mAbs) and other proteins that undergo extensive internalization after receptor binding, enhancing tumor targeting compared to direct electrophilic radioiodination. However, radiochemical yields for [(131)I]SGMIB synthesis are low, which we hypothesize is due to steric hindrance from the Boc-protected guanidinomethyl group ortho to the tin moiety. To overcome this, we developed the isomeric compound, N-succinimidyl 3-guanidinomethyl-5-[(131)I]iodobenzoate (iso-[(131)I]SGMIB) wherein this bulky group was moved from ortho to meta position. METHODS: Boc2-iso-SGMIB standard and its tin precursor, N-succinimidyl 3-((1,2-bis(tert-butoxycarbonyl)guanidino)methyl)-5-(trimethylstannyl)benzoate (Boc2-iso-SGMTB), were synthesized using two disparate routes, and iso-[*I]SGMIB synthesized from the tin precursor. Two HER2-targeted vectors - trastuzumab (Tras) and a nanobody 5F7 (Nb) - were labeled using iso-[(*)I]SGMIB and [(*)I]SGMIB. Paired-label internalization assays in vitro with both proteins, and biodistribution in vivo with trastuzumab, labeled using the two isomeric prosthetic agents were performed. RESULTS: When the reactions were performed under identical conditions, radioiodination yields for the synthesis of Boc2-iso-[(131)I]SGMIB were significantly higher than those for Boc2-[(131)I]SGMIB (70.7±2.0% vs 56.5±5.5%). With both Nb and trastuzumab, conjugation efficiency also was higher with iso-[(131)I]SGMIB than with [(131)I]SGMIB (Nb, 33.1±7.1% vs 28.9±13.0%; Tras, 45.1±4.5% vs 34.8±10.3%); however, the differences were not statistically significant. Internalization assays performed on BT474 cells with 5F7 Nb indicated similar residualizing capacity over 6h; however, at 24h, radioactivity retained intracellularly for iso-[(131)I]SGMIB-Nb was lower than for [(125)I]SGMIB-Nb (46.4±1.3% vs 56.5±2.5%); similar results were obtained using Tras. Likewise, a paired-label biodistribution of Tras labeled using iso-[(125)I]SGMIB and [(131)I]SGMIB indicated an up to 22% tumor uptake advantage at later time points for [(131)I]SGMIB-Tras. CONCLUSION: Given the higher labeling efficiency obtained with iso-SGMIB, this residualizing agent might be of value for use with shorter half-life radiohalogens.


Asunto(s)
Anticuerpos Monoclonales Humanizados/metabolismo , Benzoatos , Neoplasias de la Mama/diagnóstico por imagen , Guanidina/análogos & derivados , Radioisótopos de Yodo , Radiofármacos , Receptor ErbB-2/metabolismo , Animales , Anticuerpos Monoclonales Humanizados/inmunología , Benzoatos/farmacocinética , Neoplasias de la Mama/metabolismo , Femenino , Citometría de Flujo , Guanidina/farmacocinética , Radioisótopos de Yodo/farmacocinética , Marcaje Isotópico , Ratones , Cintigrafía , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Estereoisomerismo , Distribución Tisular , Células Tumorales Cultivadas
11.
Nucl Med Biol ; 41(6): 441-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24776093

RESUMEN

INTRODUCTION: Modular nanotransporters (MNTs) are vehicles designed to transport drugs from the cell surface via receptor-mediated endocytosis and endosomal escape to nucleus. Hence their conjugation to Auger electron emitters, can cause severe cell killing, by nuclear localization. Herein we evaluate the use of MNT as a platform for targeted radiotherapy with (67)Ga. METHODS: EGF was the targeting ligand on the MNT, and NOTA was selected for its radiolabeling with (67)Ga. In the radiolabeling study we dealt with the precipitation of MNT (pI 5.7) at the labeling pH (4.5-5.5) of (67)Ga. Cellular and nuclei uptake of (67)Ga-NOTA-MNT by the A431 cell line was determined. Its specific cytotoxicity was compared to that of (67)Ga-EDTA, (67)Ga-NOTA-BSA and (67)Ga-NOTA-hEGF, in A431 and U87MGWTT, cell lines, by clonogenic assay. Dosimetry studies were also performed. RESULTS: (67)Ga-NOTA-MNT was produced with 90% yield and specific activity of 25.6mCi/mg. The in vitro kinetics revealed an increased uptake over 24h. 55% of the internalized radioactivity was detected in the nuclei at 1h. The cytotoxicity of (67)Ga-NOTA-MNT on A431 cell line was 17 and 385-fold higher when compared to non-specific (67)Ga-NOTA-BSA and (67)Ga-EDTA. While its cytotoxic potency was 13 and 72-fold higher when compared to (67)Ga-NOTA-hEGF in the A431 and the U87MGWTT cell lines, respectively, validating its nuclear localization. The absorbed dose, for 63% cell killing, was 8Gy, confirming the high specific index of (67)Ga. CONCLUSION: These results demonstrate the feasibility of using MNT as a platform for single cell kill targeted radiotherapy by Auger electron emitters.


Asunto(s)
Electrones , Receptores ErbB/metabolismo , Compuestos Heterocíclicos/uso terapéutico , Isotiocianatos/uso terapéutico , Péptidos/química , Péptidos/metabolismo , Radioterapia/métodos , Transporte Biológico , Línea Celular Tumoral , Núcleo Celular/metabolismo , Radioisótopos de Galio/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Compuestos Heterocíclicos/química , Humanos , Isotiocianatos/química , Marcaje Isotópico , Transporte de Proteínas , Radiometría
12.
Nucl Med Biol ; 40(1): 52-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23159171

RESUMEN

INTRODUCTION: With a molecular weight an order of magnitude lower than antibodies but possessing comparable affinities, Nanobodies (Nbs) are attractive as targeting agents for cancer diagnosis and therapy. An anti-HER2 Nb could be utilized to determine HER2 status in breast cancer patients prior to trastuzumab treatment. This provided motivation for the generation of HER2-specific 5F7GGC Nb, its radioiodination and evaluation for targeting HER2 expressing tumors. METHODS: 5F7GGC Nb was radioiodinated with ¹²5I using Iodogen and with ¹³¹I using the residualizing agent N(ɛ)-(3-[¹³¹I]iodobenzoyl)-Lys5-N(α)-maleimido-Gly¹-GEEEK ([¹³¹I]IB-Mal-D-GEEEK) used previously successfully with intact antibodies. Paired-label internalization assays using BT474M1 cells and tissue distribution experiments in athymic mice bearing BT474M1 xenografts were performed to compare the two labeled Nb preparations. RESULTS: The radiochemical yields for Iodogen and [¹³¹I]IB-Mal-D-GEEEK labeling were 83.6±5.0% (n=10) and 59.6±9.4% (n=15), respectively. The immunoreactivity of labeled proteins was preserved as confirmed by in vitro and in vivo binding to tumor cells. Biodistribution studies showed that Nb radiolabeled using [¹³¹I]IB-Mal-D-GEEEK, compared with the directly labeled Nb, had a higher tumor uptake (4.65±0.61% ID/g vs. 2.92±0.24% ID/g at 8h), faster blood clearance, lower accumulation in non-target organs except kidneys, and as a result, higher concomitant tumor-to-blood and tumor-to-tissue ratios. CONCLUSIONS: Taken together, these results demonstrate that 5F7GGC anti-HER2 Nb labeled with residualizing [¹³¹I]IB-Mal-D-GEEEK had better tumor targeting properties compared to the directly labeled Nb suggesting the potential utility of this Nb conjugate for SPECT (¹²9I) and PET imaging (¹²4I) of patients with HER2-expressing tumors.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Terapia Molecular Dirigida , Receptor ErbB-2/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Especificidad de Anticuerpos , Transporte Biológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Radioisótopos de Yodo , Maleimidas/química , Ratones , Transporte de Proteínas , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/uso terapéutico
13.
EJNMMI Res ; 2(1): 59, 2012 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-23107475

RESUMEN

BACKGROUND: This study evaluates the potential utility of a modular nanotransporter (MNT) for enhancing the nuclear delivery and cytotoxicity of the Auger electron emitter 125I in cancer cells that overexpress the epidermal growth factor receptor (EGFR). METHODS: MNTs are recombinant multifunctional polypeptides that we have developed for achieving selective delivery of short-range therapeutics into cancer cells. MNTs contain functional modules for receptor binding, internalization, endosomal escape and nuclear translocation, thereby facilitating the transport of drugs from the cell surface to the nucleus. The MNT described herein utilized EGF as the targeting ligand and was labeled with 125I using N-succinimidyl-4-guanidinomethyl-3-[125I]iodobenzoate (SGMIB). Membrane binding, intracellular and nuclear accumulation kinetics, and clonogenic survival assays were performed using the EGFR-expressing A431 epidermoid carcinoma and D247 MG glioma cell lines. RESULTS: [125I]SGMIB-MNT bound to A431 and D247 MG cells with an affinity comparable to that of native EGF. More than 60% of internalized [125I]SGMIB-MNT radioactivity accumulated in the cell nuclei after a 1-h incubation. The cytotoxic effectiveness of [125I]SGMIB-MNT compared with 125I-labeled bovine serum albumin control was enhanced by a factor of 60 for D247 MG cells and more than 1,000-fold for A431 cells, which express higher levels of EGFR. CONCLUSIONS: MNT can be utilized to deliver 125I into the nuclei of cancer cells overexpressing EGFR, significantly enhancing cytotoxicity. Further evaluation of [125I]SGMIB-MNT as a targeted radiotherapeutic for EGFR-expressing cancer cells appears warranted.

14.
Nucl Med Rev Cent East Eur ; 14(2): 85-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22219148

RESUMEN

BACKGROUND: 44Sc as a positron emitter can be an interesting alternative to 68Ga (T½=67.71 min) due to its longer half-life (T½=3.97 h). Moreover, the b-emitter 47Sc can be used for therapy when attached to the same biomolecule vectors. DOTA as a chelating agent has been proven suitable for the radiolabelling of peptides recognising tumour cell receptors in vivo with M3+ radiometals. DOTA-derivatized peptides have been successfully labelled with 90Y and 177Lu for therapy, and with 68Ga for PET imaging. However, published data on 44Sc-labelled DOTA-biomolecules as potential PET radiotracers are still very limited. The aim of this study was to compare the affinity of natGa- and natSc-labelled DOTA-TATE to somatostatin receptors subtype 2 expressed in rat pancreatic cancer cell line AR42J. MATERIAL AND METHODS: The cold complexes of DOTA-TATE with natGa and natSc were synthesized and identified by HPLC and MS analysis and evaluated in vitro for competitive binding to cancer cell line AR42J expressing somatostatin receptors subtype 2 (sstr2). RESULTS: The IC50 values calculated from the displacement curve of {125I-Tyr11}-SST-14 were: 0.20±0.18, 0.70±0.20, 0.64±0.22 and 0.67±0.12 for natGa-DOTA-TATE, natSc-DOTA-TATE, DOTA-TATE, and {Tyr11}-SST-14 complexes, respectively, with the affinity lowering in the decreasing order: natGa-DOTA-TATE>DOTA-TATE>Tyr11-SST-14>natSc-DOTA-TATE. CONCLUSIONS: The binding affinity of natGa-DOTA-TATE appeared higher than that of natSc-DOTA-TATE. Further in vitro and in vivo studies are needed to verify the influence of the chelated metal on the affinity and uptake of the respective radiolabelled compounds. This information might be crucial when the in vivo applications of peptides labelled with 68Ga and 44Sc for PET, as well as the use of 47Sc for radiotherapy are considered.


Asunto(s)
Quelantes/farmacocinética , Neoplasias Pancreáticas/metabolismo , Radioisótopos/farmacocinética , Receptores de Somatostatina/efectos de los fármacos , Escandio/farmacocinética , Animales , Radioisótopos de Galio/farmacocinética , Concentración 50 Inhibidora , Neoplasias Experimentales , Neoplasias Pancreáticas/inducido químicamente , Tomografía de Emisión de Positrones/métodos , Ratas , Distribución Tisular
15.
Nucl Med Biol ; 36(6): 591-603, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19647165

RESUMEN

INTRODUCTION: The aim of the study was to compare in vitro and in vivo a novel DOTA-chelated bombesin (BN) analog of the amino acid sequence, QRLGNQWAVGHLM-CONH(2) (BN[2-14]NH(2)), labeled with (90)Y and (177)Lu, for its potential use in targeted radiotherapy of tumors expressing gastrin releasing peptide (GRP) receptors. The same amino acid sequence, but with different chelator, referred as BN1.1 (Gly-Gly-Cys-Aca-QRLGNQWAVGHLM-CONH(2)), has already been studied and reported; however, the DOTA-chelated one, suitable for labeling with M(+3) type radiometals, was not yet described. METHODS: The conditions for labeling of DOTA-BN[2-14]NH(2) with noncarrier added (90)Y and with (177)Lu [specific activity (SA), 15 Ci/mg Lu] were investigated and optimized to provide (90)Y-DOTA-BN[2-14]NH(2) and (177)Lu-DOTA-BN[2-14]NH(2) of high SA. The stability of the radiolabeled compounds in human serum was evaluated over a period of 24 h. The human prostate cancer cell line PC-3, known to express GRP receptors, was used for in vitro evaluation of radiolabeled peptide affinity to GRP receptors and for assessment of cytotoxicity of both nonlabeled and radiolabeled peptide. Biodistribution accompanied by receptor blocking was studied in normal Swiss mice. RESULTS: (90)Y-DOTA-BN[2-14]NH(2) and (177)Lu-DOTA-BN[2-14]NH(2) were obtained with radiochemical yield >98% and high SA (67.3 GBq (90)Y/mumol and 33.6 GBq (177)Lu/mumol, respectively). They were stable when incubated in human serum for up to 24 h. The binding affinities of DOTA-BN[2-14]NH(2) and both (nat)Y- and (nat)Lu-labeled analogs to GRP receptors were high (IC(50)=1.78, 1.99, and 1.34 nM, respectively), especially for the (nat)Lu-DOTA-BN[2-14]NH(2) complex. The cytotoxicity study of DOTA-BN[2-14]NH(2) to PC-3 cells revealed an IC(50)=6300 nM after 72 h of exposition, while the labeled derivatives showed no significant cytotoxic effect. The internalization rate to PC-3 cells was more rapid for (177)Lu-labeled peptide (84.87%) than for the (90)Y-labeled one (80.79%), while the efflux rate was slower for (177)Lu-DOTA-BN[2-14]NH(2) (46.8% vs. 61.74%). The biodistribution study of both derivatives in normal mice revealed a specific binding to GRP receptor-positive tissues, which could be blocked by coinjection of cold peptide. The effect of receptor blockage in vivo was also more pronounced for the (177)Lu-labeled peptide than that for the (90)Y-labeled (81% vs. 42%, respectively). CONCLUSIONS: Our studies demonstrated that DOTA-BN[2-14]NH(2) can be labeled with (90)Y (NCA) and (177)Lu (CA) with high radiochemical yields. The in vitro and in vivo comparison between (90)Y-DOTA-BN[2-14]NH(2) and (177)Lu-DOTA-BN[2-14]NH(2) indicated that the change of radiometal in the complex from Y to Lu influence the binding affinity to the GRP receptors with preference to the (177)Lu-labeled derivative.


Asunto(s)
Bombesina/química , Bombesina/metabolismo , Compuestos Heterocíclicos con 1 Anillo/química , Lutecio/química , Radiofármacos , Animales , Transporte Biológico , Bombesina/sangre , Bombesina/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Marcaje Isotópico , Masculino , Ratones , Radiofármacos/sangre , Radiofármacos/química , Radiofármacos/metabolismo , Radiofármacos/toxicidad , Receptores de Bombesina/metabolismo , Distribución Tisular , Radioisótopos de Itrio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA