Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 24(9): 4019-4032, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37604780

RESUMEN

Herein, we demonstrate the feasibility of a three-dimensional printed chitosan (CS)-poly(vinyl alcohol) (PVA)-gelatin (Gel) hydrogel incorporating the antimicrobial drug levofloxacin (LEV) as a potential tissue engineering scaffold. Hydrogels were prepared by physically cross-linking the polymers, and the printability of the prepared hydrogels was determined. The hydrogel with 3% w/v of CS, 3% w/v of PVA, and 2% w/v of Gel presented the best printability, producing smooth and uniform scaffolds. The integrity of 3D-printed scaffolds was improved via a neutralization process since after testing three different neutralized agents, i.e., NH3 vapors, EtOH/NaOH, and KOH solutions. It was proved that the CS/PVA/Gel hydrogel was formed by hydrogen bonds and remained amorphous in the 3D-printed structures. Drug loading studies confirmed the successful incorporation of LEV, and its in vitro release continued for 48 h. The cytotoxicity/cytocompatibility tests showed that all prepared scaffolds were cytocompatible.


Asunto(s)
Quitosano , Ingeniería de Tejidos , Levofloxacino/farmacología , Gelatina , Hidrogeles , Impresión Tridimensional
2.
Biomacromolecules ; 23(5): 1841-1863, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35438479

RESUMEN

Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications.


Asunto(s)
Materiales Biocompatibles , Ingeniería de Tejidos , Polímeros , Impresión Tridimensional , Medicina Regenerativa , Ingeniería de Tejidos/métodos , Andamios del Tejido
3.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35742957

RESUMEN

Syndecans act as independent co-receptors to exert biological activities and their altered function is associated with many pathophysiological conditions. Here, syndecan-1 and -4 were examined in lesional skin of patients with psoriasis. Immunohistochemical staining confirmed altered syndecan-1 distribution and revealed absence of syndecan-4 expression in the epidermis. Fibronectin (FN)-known to influence inflammation and keratinocyte hyperproliferation via α5ß1 integrin in psoriasis-was also decreased. Syndecan-1 and -4 expression was analyzed in freshly isolated lesional psoriatic human keratinocytes (PHK) characterized based on their proliferation and differentiation properties. mRNA levels of syndecan-1 were similar between healthy and PHK, while syndecan-4 was significantly decreased. Cell growth and release of the pro-inflammatory Tumor Necrosis Factor-alpha (TNFα) were selectively and significantly induced in PHKs plated on FN. Results from co-culture of healthy keratinocytes and psoriatic fibroblasts led to the speculation that at least one factor released by fibroblasts down-regulate syndecan-1 expression in PHK plated on FN. To assay if biological treatments for psoriasis target keratinocyte proliferation, gelatin-based patches enriched with inteleukin (IL)-17α or TNFα blockers were prepared and tested using a full-thickness healthy epidermal model (Phenion®). Immunohistochemistry analysis showed that both blockers impacted the localisation of syndecan-1 within the refined epidermis. These results provide evidence that syndecans expression are modified in psoriasis, suggesting that they may represent markers of interest in this pathology.


Asunto(s)
Psoriasis , Sindecano-4 , Epidermis/metabolismo , Humanos , Queratinocitos/metabolismo , Psoriasis/patología , Sindecano-1/genética , Sindecano-1/metabolismo , Sindecano-4/genética , Sindecano-4/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
4.
Pharmaceutics ; 16(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38543253

RESUMEN

The plant material Scutellariae baicalensis radix, which is rich in flavones (baicalin), possesses antibacterial, antifungal, antioxidant, and anti-inflammatory properties. This work aimed to develop a 3D-printed chitosan-based hydrogel rich in Scutellariae baicalensis extract as an innovative approach for the personalized treatment of periodontal diseases. Chitosan-based hydrogels were prepared, and the printability of the prepared hydrogels was determined. The hydrogel with 2.5% w/v of high molecular-weight chitosan (CS), 2% w/v gelatin (Gel), and 10% w/w of extract (Ex) presented the best printability, producing smooth and uniform scaffolds. It was proved that the CS/Gel/Ex hydrogel was stabilized by hydrogen bonds and remained in amorphous dispersion in the 3D-printed structures (confirmed by ATR-FTIR and XRPD). Due to the amorphization of the active substance, a significant increase in the release of baicalin in vitro was observed. It was demonstrated that there was an initial burst release and a continuous release profile (n = 3). Higuchi kinetic was the most likely baicalin release kinetic. The second fit, the Korsmeyer-Peppas kinetics model, showed coupled diffusion of the active ingredient in the hydrated matrix and polymer relaxation regulated release, with n values ranging from 0.45 to 0.89. The anti-inflammatory properties of 3D-printed scaffolds were assessed as the ability to inhibit the activity of the hyaluronidase enzyme. Activity was assessed as IC50 = 63.57 ± 4.98 mg hydrogel/mL (n = 6). Cytotoxicity tests demonstrated the biocompatibility of the material. After 24 h of exposure to the 2.5CS/2Gel/10Ex scaffold, fibroblasts migrated toward the scratch, closed the "wound" by 97.1%, and significantly accelerated the wound healing process. The results render the 3D-printed CS/Gel/extract scaffolds as potential candidates for treating periodontal diseases.

5.
Polymers (Basel) ; 15(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36904437

RESUMEN

Poly(lactic acid) (PLA) is considered the most promising biobased substitute for fossil-derived polymers due to its compostability, biocompatibility, renewability, and good thermomechanical properties. However, PLA suffers from several shortcomings, such as low heat distortion temperature, thermal resistance, and rate of crystallization, whereas some other specific properties, i.e., flame retardancy, anti-UV, antibacterial or barrier properties, antistatic to conductive electrical characteristics, etc., are required by different end-use sectors. The addition of different nanofillers represents an attractive way to develop and enhance the properties of neat PLA. Numerous nanofillers with different architectures and properties have been investigated, with satisfactory achievements, in the design of PLA nanocomposites. This review paper overviews the current advances in the synthetic routes of PLA nanocomposites, the imparted properties of each nano-additive, as well as the numerous applications of PLA nanocomposites in various industrial fields.

6.
Pharmaceutics ; 14(1)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35057041

RESUMEN

3D printing, or additive manufacturing, has gained considerable interest due to its versatility regarding design as well as in the large choice of materials. It is a powerful tool in the field of personalized pharmaceutical treatment, particularly crucial for pediatric and geriatric patients. Polysaccharides are abundant and inexpensive natural polymers, that are already widely used in the food industry and as excipients in pharmaceutical and cosmetic formulations. Due to their intrinsic properties, such as biocompatibility, biodegradability, non-immunogenicity, etc., polysaccharides are largely investigated as matrices for drug delivery. Although an increasing number of interesting reviews on additive manufacturing and drug delivery are being published, there is a gap concerning the printing of polysaccharides. In this article, we will review recent advances in the 3D printing of polysaccharides focused on drug delivery applications. Among the large family of polysaccharides, the present review will particularly focus on cellulose and cellulose derivatives, chitosan and sodium alginate, printed by fused deposition modeling and extrusion-based printing.

7.
Antioxidants (Basel) ; 11(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421457

RESUMEN

In the present study, a series of semisolid Oil in Water (O/W) emulsions containing different Curcumin (Cur) derivatives (Cur powder, Cur extract and Cur complexed with ß-cyclodextrin) in varying concentrations, were prepared. Initially, Dynamic Light Scattering (DLS), microscopy, pH and viscosity measurements were performed to evaluate their stability over time. Moreover, the effect of the active cosmetic substances on the Sun Protection Factor (SPF), antimicrobial and antioxidant properties of the prepared emulsions was investigated. It was observed that emulsions containing Cur extract and Cur ß-cyclodextrin complex presented great viscosity and pH stability for up to 90 days of storage contrary to the emulsions containing Cur powder which showed unstable behavior due to the formation of agglomerates. All samples presented SPF values between 2.6 and 3.2. The emulsions with Cur in all forms exhibited high antioxidant activity, whereas the emulsion containing Cur ß-cyclodextrin complex presented the highest value. Despite their improved stability and antioxidant activity, the emulsions containing Cur extract and Cur-ß-cyclodextrin exhibited a low percentage of antimicrobial activity against E. coli and Staphylococcus bacteria. Instead, the emulsions containing Cur powder presented a reduction rate over 90 % against E. coli and Staphylococcus colonies.

8.
Pharmaceutics ; 14(8)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36015319

RESUMEN

In the current work, a series of PCL polyesters with different molecular weights was synthesized and used for the fabrication of nanofibrous patches via electrospinning, as sustained release matrices for leflunomide's active metabolite, teriflunomide (TFL). The electrospinning conditions for each sample were optimized and it was found that only one material with high Mn (71,000) was able to produce structures with distinct fibers devoid of the presence of beads. The successful preparation of the fibers was determined by scanning electron microscopy (SEM).TFL (10, 20 and 30 wt%) in three different concentrations was incorporated into the prepared nanofibers, which were used in in vitro drug release experiments. The drug-loaded nanofibrous formulations were further characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder X-ray diffractometry (XRD).It was found that TFL was incorporated in an amorphous form inside the polymeric nanofibers and that significant molecular interactions were formed between the drug and the polyester. Additionally, in vitro dissolution studies showed that the PCL/TFL-loaded nanofibers exhibit a biphasic release profile, having an initial burst release phase, followed by a sustained release until 250 h. Finally, a kinetic analysis of the obtained profiles revealed that the drug release was directly dependent on the amount TFL incorporated into the nanofibers.

9.
Pharmaceutics ; 14(2)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35214091

RESUMEN

The sustained release of pharmaceutical substances remains the most convenient way of drug delivery. Hence, a great variety of reports can be traced in the open literature associated with drug delivery systems (DDS). Specifically, the use of microparticle systems has received special attention during the past two decades. Polymeric microparticles (MPs) are acknowledged as very prevalent carriers toward an enhanced bio-distribution and bioavailability of both hydrophilic and lipophilic drug substances. Poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), and their copolymers are among the most frequently used biodegradable polymers for encapsulated drugs. This review describes the current state-of-the-art research in the study of poly(lactic acid)/poly(lactic-co-glycolic acid) microparticles and PLA-copolymers with other aliphatic acids as drug delivery devices for increasing the efficiency of drug delivery, enhancing the release profile, and drug targeting of active pharmaceutical ingredients (API). Potential advances in generics and the constant discovery of therapeutic peptides will hopefully promote the success of microsphere technology.

10.
Polymers (Basel) ; 13(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072917

RESUMEN

Environmental problems, such as global warming and plastic pollution have forced researchers to investigate alternatives for conventional plastics. Poly(lactic acid) (PLA), one of the well-known eco-friendly biodegradables and biobased polyesters, has been studied extensively and is considered to be a promising substitute to petroleum-based polymers. This review gives an inclusive overview of the current research of lactic acid and lactide dimer techniques along with the production of PLA from its monomers. Melt polycondensation as well as ring opening polymerization techniques are discussed, and the effect of various catalysts and polymerization conditions is thoroughly presented. Reaction mechanisms are also reviewed. However, due to the competitive decomposition reactions, in the most cases low or medium molecular weight (MW) of PLA, not exceeding 20,000-50,000 g/mol, are prepared. For this reason, additional procedures such as solid state polycondensation (SSP) and chain extension (CE) reaching MW ranging from 80,000 up to 250,000 g/mol are extensively investigated here. Lastly, numerous practical applications of PLA in various fields of industry, technical challenges and limitations of PLA use as well as its future perspectives are also reported in this review.

11.
Polymers (Basel) ; 13(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34578037

RESUMEN

The compound of chitin is the second most important and abundant natural biopolymer in the world. The main extraction and exploitation sources of this natural polysaccharide polymer are mainly crustaceans species, such as shrimps and crabs. Chitosan (CS) (poly-ß-(1 → 4)-2-amino-2-deoxy-d-glucose) can be derived from chitin and can be mentioned as a compound that has high value-added applications due to its wide variety of uses, including pharmaceutical, biomedical, and cosmetics applications, food etc. Furthermore, chitosan is a biopolymer that can be used for adsorption applications because it contains amino and hydroxyl groups in its chemical structure (molecules), resulting in possible interactions of adsorption between chitosan and pollutants (uranium, mercury, rare earth elements (REEs), phenols, etc.). However, adsorption is a very effective, fast, simple, and low-cost process. This review article places emphasis on recent demonstrated research papers (2014-2020) where the chemical modifications of CS are explained briefly (grafting, cross-linking etc.) for the uptake of uranium, mercury, and REEs in synthesized aqueous solutions. Finally, figures and tables from selected synthetic routes of CS are presented and the effects of pH and the best mathematical fitting of isotherm and kinetic equations are discussed. In addition, the adsorption mechanisms are discussed.

12.
Int J Biol Macromol ; 162: 693-703, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32585270

RESUMEN

Despite the progress in the development of hemostatic products, efficient treatment solutions to control hemorrhage upon wounding are still necessary. Chitosan (CS) is a natural hydrogel-forming polysaccharide, easy to modify for specific applications. Inorganic compounds in turn possess documented hemostatic properties. In this study, innovative hemostatic products based on CS, containing the inorganic additives aluminum chloride, aluminum sulfate hydrate or iron(III) sulfate and the antibiotic Levofloxacin were prepared, and their potential use as hemostatic materials was investigated. Structural characteristics, physical state and drug loading/release properties were examined. Strong interactions developed between CS and the additives, the pore size in the resulting products was affected, swelling increased up to 2500% and the stability of the wound dressings improved. The crystallinity of Levofloxacin reduced, and its release was immediate. The materials showed biocompatibility upon contact with cultured keratinocytes, hemocompatibility and hemostatic efficacy in vitro and in vivo.


Asunto(s)
Vendajes , Materiales Biocompatibles , Quitosano , Compuestos Férricos , Hemostáticos , Hidrogeles , Levofloxacino/farmacología , Animales , Antibacterianos/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Coagulación Sanguínea , Células Cultivadas , Quitosano/química , Quitosano/farmacología , Compuestos Férricos/química , Compuestos Férricos/farmacología , Hemostáticos/química , Hemostáticos/farmacología , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Queratinocitos , Ratones Endogámicos C57BL , Porosidad
13.
Polymers (Basel) ; 12(7)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650536

RESUMEN

Chitosan (CS) is a hemi-synthetic cationic linear polysaccharide produced by the deacetylation of chitin. CS is non-toxic, highly biocompatible, and biodegradable, and it has a low immunogenicity. Additionally, CS has inherent antibacterial properties and a mucoadhesive character and can disrupt epithelial tight junctions, thus acting as a permeability enhancer. As such, CS and its derivatives are well-suited for the challenging field of ocular drug delivery. In the present review article, we will discuss the properties of CS that contribute to its successful application in ocular delivery before reviewing the latest advances in the use of CS for the development of novel ophthalmic delivery systems. Colloidal nanocarriers (nanoparticles, micelles, liposomes) will be presented, followed by CS gels and lenses and ocular inserts. Finally, instances of CS coatings, aiming at conferring mucoadhesiveness to other matrixes, will be presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA