Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
PLoS Genet ; 20(5): e1011253, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722918

RESUMEN

Synaptic vesicle proteins (SVps) are transported by the motor UNC-104/KIF1A. We show that SVps travel in heterogeneous carriers in C. elegans neuronal processes, with some SVp carriers co-transporting lysosomal proteins (SV-lysosomes). LRK-1/LRRK2 and the clathrin adaptor protein complex AP-3 play a critical role in the sorting of SVps and lysosomal proteins away from each other at the SV-lysosomal intermediate trafficking compartment. Both SVp carriers lacking lysosomal proteins and SV-lysosomes are dependent on the motor UNC-104/KIF1A for their transport. In lrk-1 mutants, both SVp carriers and SV-lysosomes can travel in axons in the absence of UNC-104, suggesting that LRK-1 plays an important role to enable UNC-104 dependent transport of synaptic vesicle proteins. Additionally, LRK-1 acts upstream of the AP-3 complex and regulates its membrane localization. In the absence of the AP-3 complex, the SV-lysosomes become more dependent on the UNC-104-SYD-2/Liprin-α complex for their transport. Therefore, SYD-2 acts to link upstream trafficking events with the transport of SVps likely through its interaction with the motor UNC-104. We further show that the mistrafficking of SVps into the dendrite in lrk-1 and apb-3 mutants depends on SYD-2, likely by regulating the recruitment of the AP-1/UNC-101. SYD-2 acts in concert with AP complexes to ensure polarized trafficking & transport of SVps.


Asunto(s)
Complejo 3 de Proteína Adaptadora , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Lisosomas , Proteínas del Tejido Nervioso , Vesículas Sinápticas , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/genética , Complejo 3 de Proteína Adaptadora/metabolismo , Complejo 3 de Proteína Adaptadora/genética , Lisosomas/metabolismo , Lisosomas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Transporte de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Neuronas/metabolismo , Cinesinas/metabolismo , Cinesinas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Axones/metabolismo , Péptidos y Proteínas de Señalización Intercelular
2.
J Cell Sci ; 137(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477340

RESUMEN

Axonal transport in neurons is essential for cargo movement between the cell body and synapses. Caenorhabditis elegans UNC-104 and its homolog KIF1A are kinesin-3 motors that anterogradely transport precursors of synaptic vesicles (pre-SVs) and are degraded at synapses. However, in C. elegans, touch neuron-specific knockdown of the E1 ubiquitin-activating enzyme, uba-1, leads to UNC-104 accumulation at neuronal ends and synapses. Here, we performed an RNAi screen and identified that depletion of fbxb-65, which encodes an F-box protein, leads to UNC-104 accumulation at neuronal distal ends, and alters UNC-104 net anterograde movement and levels of UNC-104 on cargo without changing synaptic UNC-104 levels. Split fluorescence reconstitution showed that UNC-104 and FBXB-65 interact throughout the neuron. Our theoretical model suggests that UNC-104 might exhibit cooperative cargo binding that is regulated by FBXB-65. FBXB-65 regulates an unidentified post-translational modification (PTM) of UNC-104 in a region beside the cargo-binding PH domain. Both fbxb-65 and UNC-104, independently of FBXB-65, regulate axonal pre-SV distribution, transport of pre-SVs at branch points and organismal lifespan. FBXB-65 regulates a PTM of UNC-104 and the number of motors on the cargo surface, which can fine-tune cargo transport to the synapse.


Asunto(s)
Transporte Axonal , Proteínas de Caenorhabditis elegans , Proteínas F-Box , Cinesinas , Animales , Transporte Axonal/fisiología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas F-Box/metabolismo , Cinesinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dominios Homólogos a Pleckstrina , Procesamiento Proteico-Postraduccional
3.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37194499

RESUMEN

Stationary clusters of vesicles are a prominent feature of axonal transport, but little is known about their physiological and functional relevance to axonal transport. Here, we investigated the role of vesicle motility characteristics in modulating the formation and lifetimes of such stationary clusters, and their effect on cargo flow. We developed a simulation model describing key features of axonal cargo transport, benchmarking the model against experiments in the posterior lateral mechanosensory neurons of Caenorhabditis elegans. Our simulations included multiple microtubule tracks and varied cargo motion states, and account for dynamic cargo-cargo interactions. Our model also incorporates static obstacles to vesicle transport in the form of microtubule ends, stalled vesicles and stationary mitochondria. We demonstrate, both in simulations and in an experimental system, that a reduction in reversal rates is associated with a higher proportion of long-lived stationary vesicle clusters and reduced net anterograde transport. Our simulations support the view that stationary clusters function as dynamic reservoirs of cargo vesicles, and reversals aid cargo in navigating obstacles and regulate cargo transport by modulating the proportion of stationary vesicle clusters along the neuronal process.


Asunto(s)
Neuronas , Vesículas Sinápticas , Animales , Vesículas Sinápticas/metabolismo , Neuronas/fisiología , Transporte Axonal/fisiología , Fagocitosis , Orgánulos , Caenorhabditis elegans , Vesículas Transportadoras/metabolismo
4.
PLoS Genet ; 14(3): e1007263, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29529030

RESUMEN

The C. elegans ortholog of mammalian calsyntenins, CASY-1, is an evolutionarily conserved type-I transmembrane protein that is highly enriched in the nervous system. Mammalian calsyntenins are strongly expressed at inhibitory synapses, but their role in synapse development and function is still elusive. Here, we report a crucial role for CASY-1 in regulating GABAergic synaptic transmission at the C. elegans neuromuscular junction (NMJ). The shorter isoforms of CASY-1; CASY-1B and CASY-1C, express and function in GABA motor neurons where they regulate GABA neurotransmission. Using pharmacological, behavioral, electrophysiological, optogenetic and imaging approaches we establish that GABA release is compromised at the NMJ in casy-1 mutants. Further, we demonstrate that CASY-1 is required to modulate the transport of GABAergic synaptic vesicle (SV) precursors through a possible interaction with the SV motor protein, UNC-104/KIF1A. This study proposes a possible evolutionarily conserved model for the regulation of GABA synaptic functioning by calsyntenins.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Neuronas GABAérgicas/metabolismo , Unión Neuromuscular/metabolismo , Isoformas de Proteínas/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Proteínas de Caenorhabditis elegans/química , Neuronas Motoras/fisiología , Isoformas de Proteínas/química , Transporte de Proteínas
5.
Traffic ; 19(3): 166-181, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29178177

RESUMEN

Steady axonal cargo flow is central to the functioning of healthy neurons. However, a substantial fraction of cargo in axons remains stationary up to several minutes. We examine the transport of precursors of synaptic vesicles (pre-SVs), endosomes and mitochondria in Caenorhabditis elegans touch receptor neurons, showing that stationary cargo are predominantly present at actin-rich regions along the neuronal process. Stationary vesicles at actin-rich regions increase the propensity of moving vesicles to stall at the same location, resulting in traffic jams arising from physical crowding. Such local traffic jams at actin-rich regions are likely to be a general feature of axonal transport since they also occur in Drosophila neurons. Repeated touch stimulation of C. elegans reduces the density of stationary pre-SVs, indicating that these traffic jams can act as both sources and sinks of vesicles. This suggests that vesicles trapped in actin-rich regions are functional reservoirs that may contribute to maintaining robust cargo flow in the neuron. A video abstract of this article can be found at: Video S1; Video S2.


Asunto(s)
Transporte Axonal , Actinas/metabolismo , Animales , Caenorhabditis elegans , Drosophila , Endosomas/metabolismo , Mitocondrias/metabolismo , Vesículas Sinápticas/metabolismo
6.
J Neurogenet ; 34(3-4): 282-297, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33030066

RESUMEN

Axonal transport is integral for maintaining neuronal form and function, and defects in axonal transport have been correlated with several neurological diseases, making it a subject of extensive research over the past several years. The anterograde and retrograde transport machineries are crucial for the delivery and distribution of several cytoskeletal elements, growth factors, organelles and other synaptic cargo. Molecular motors and the neuronal cytoskeleton function as effectors for multiple neuronal processes such as axon outgrowth and synapse formation. This review examines the molecular mechanisms governing axonal transport, specifically highlighting the contribution of studies conducted in C. elegans, which has proved to be a tractable model system in which to identify both novel and conserved regulatory mechanisms of axonal transport.


Asunto(s)
Transporte Axonal/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Proteínas del Tejido Nervioso/fisiología , Actinas/fisiología , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Citoesqueleto/fisiología , Proteínas de Filamentos Intermediarios/fisiología , Cinesinas/fisiología , Microtúbulos/fisiología , Proteínas Motoras Moleculares/fisiología , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/fisiología , Orgánulos , Procesamiento Proteico-Postraduccional , Vesículas Sinápticas
7.
PLoS Genet ; 13(11): e1007100, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29145394

RESUMEN

JIP3/UNC-16/dSYD is a MAPK-scaffolding protein with roles in protein trafficking. We show that it is present on the Golgi and is necessary for the polarized distribution of synaptic vesicle proteins (SVPs) and dendritic proteins in neurons. UNC-16 excludes Golgi enzymes from SVP transport carriers and facilitates inclusion of specific SVPs into the same transport carrier. The SVP trafficking roles of UNC-16 are mediated through LRK-1, whose localization to the Golgi is reduced in unc-16 animals. UNC-16, through LRK-1, also enables Golgi-localization of the µ-subunit of the AP-1 complex. AP1 regulates the size but not the composition of SVP transport carriers. Additionally, UNC-16 and LRK-1 through the AP-3 complex regulates the composition but not the size of the SVP transport carrier. These early biogenesis steps are essential for dependence on the synaptic vesicle motor, UNC-104 for axonal transport. Our results show that UNC-16 and its downstream effectors, LRK-1 and the AP complexes function at the Golgi and/or post-Golgi compartments to control early steps of SV biogenesis. The UNC-16 dependent steps of exclusion, inclusion and motor recruitment are critical for polarized distribution of neuronal cargo.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Transporte Axonal , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/metabolismo , Dendritas/metabolismo , Aparato de Golgi/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/genética , Vesículas Sinápticas/genética , Factor de Transcripción AP-1/metabolismo
8.
PLoS Genet ; 10(10): e1004644, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25329901

RESUMEN

Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de la Membrana/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Axonal/genética , Sitios de Unión , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Péptidos y Proteínas de Señalización Intercelular , Proteínas de la Membrana/genética , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Neuronas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
9.
PLoS Genet ; 10(2): e1004133, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516405

RESUMEN

Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Regulación de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Dominios HMG-Box/genética , Proteínas del Grupo de Alta Movilidad/genética , Motivos de Nucleótidos/genética , Unión Proteica , Proteínas Represoras/genética , Transducción de Señal/genética , Vía de Señalización Wnt/genética
10.
Genetics ; 227(1)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38467475

RESUMEN

Asymmetric transport of cargo across axonal branches is a field of active research. Mechanisms contributing to preferential cargo transport along specific branches in vivo in wild type neurons are poorly understood. We find that anterograde synaptic vesicles preferentially enter the synaptic branch or pause at the branch point in Caenorhabditis elegans Posterior Lateral Mechanosensory neurons. The synaptic vesicle anterograde kinesin motor UNC-104/KIF1A regulates this vesicle behavior at the branch point. Reduced levels of functional UNC-104 cause vesicles to predominantly pause at the branch point and lose their preference for turning into the synaptic branch. SAM-4/Myrlysin, which aids in recruitment/activation of UNC-104 on synaptic vesicles, regulates vesicle behavior at the branch point similar to UNC-104. Increasing the levels of UNC-104 increases the preference of vesicles to go straight toward the asynaptic end. This suggests that the neuron optimizes UNC-104 levels on the cargo surface to maximize the fraction of vesicles entering the branch and minimize the fraction going to the asynaptic end.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cinesinas , Proteínas del Tejido Nervioso , Vesículas Sinápticas , Animales , Vesículas Sinápticas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Neuronas/metabolismo
11.
Traffic ; 12(1): 89-101, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21029289

RESUMEN

Axonal transport is an essential process that carries cargoes in the anterograde direction to the synapse and in the retrograde direction back to the cell body. We have developed a novel in vivo method to exclusively mark and dynamically track retrogradely moving compartments carrying specific endogenous synaptic vesicle proteins in the Caenorhabditis elegans model. Our method is based on the uptake of a fluorescently labeled anti-green fluorescent protein (GFP) antibody delivered in an animal expressing the synaptic vesicle protein synaptobrevin-1::GFP in neurons. We show that this method largely labels retrogradely moving compartments. Very little labeling is observed upon blocking vesicle exocytosis or if the synapse is physically separated from the cell body. The extent of labeling is also dependent on the dyenin-dynactin complex. These data support the interpretation that the labeling of synaptobrevin-1::GFP largely occurs after vesicle fusion and the major labeling likely takes place at the synapse. Further, we observe that the retrograde compartment carrying synaptobrevin contains synaptotagmin but lacks the endosomal marker RAB-5. This labeling method is very general and can be readily adapted to any transmembrane protein on synaptic vesicles with a GFP tag inside the vesicle and can also be extended to other model systems.


Asunto(s)
Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Imagen Molecular , Neuronas/química , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Proteínas Fluorescentes Verdes/química , Proteínas R-SNARE/química
12.
Traffic ; 12(4): 372-85, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21199219

RESUMEN

Microfluidic devices have been developed for imaging behavior and various cellular processes in Caenorhabditis elegans, but not subcellular processes requiring high spatial resolution. In neurons, essential processes such as axonal, dendritic, intraflagellar and other long-distance transport can be studied by acquiring fast time-lapse images of green fluorescent protein (GFP)-tagged moving cargo. We have achieved two important goals in such in vivo studies namely, imaging several transport processes in unanesthetized intact animals and imaging very early developmental stages. We describe a microfluidic device for immobilizing C. elegans and Drosophila larvae that allows imaging without anesthetics or dissection. We observed that for certain neuronal cargoes in C. elegans, anesthetics have significant and sometimes unexpected effects on the flux. Further, imaging the transport of certain cargo in early developmental stages was possible only in the microfluidic device. Using our device we observed an increase in anterograde synaptic vesicle transport during development corresponding with synaptic growth. We also imaged Q neuroblast divisions and mitochondrial transport during early developmental stages of C. elegans and Drosophila, respectively. Our simple microfluidic device offers a useful means to image high-resolution subcellular processes in C. elegans and Drosophila and can be readily adapted to other transparent or translucent organisms.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Neuronas/metabolismo , Imagen de Lapso de Tiempo/métodos , Anestésicos/farmacología , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Transporte Biológico , Caenorhabditis elegans , Corriente Citoplasmática , Dendritas/metabolismo , Disección , Drosophila , Proteínas Fluorescentes Verdes/metabolismo , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Orgánulos/metabolismo , Fracciones Subcelulares/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo
13.
Proc Biol Sci ; 280(1762): 20130721, 2013 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-23677347

RESUMEN

Bacteria present in natural environments such as soil have evolved multiple strategies to escape predation. We report that natural isolates of Enterobacteriaceae that actively hydrolyze plant-derived aromatic ß-glucosides such as salicin, arbutin and esculin, are able to avoid predation by the bacteriovorous amoeba Dictyostelium discoideum and nematodes of multiple genera belonging to the family Rhabditidae. This advantage can be observed under laboratory culture conditions as well as in the soil environment. The aglycone moiety released by the hydrolysis of ß-glucosides is toxic to predators and acts via the dopaminergic receptor Dop-1 in the case of Caenorhabditis elegans. While soil isolates of nematodes belonging to the family Rhabditidae are repelled by the aglycone, laboratory strains and natural isolates of Caenorhabditis sp. are attracted to the compound, mediated by receptors that are independent of Dop-1, leading to their death. The ß-glucosides-positive (Bgl(+)) bacteria that are otherwise non-pathogenic can obtain additional nutrients from the dead predators, thereby switching their role from prey to predator. This study also offers an evolutionary explanation for the retention by bacteria of 'cryptic' or 'silent' genetic systems such as the bgl operon.


Asunto(s)
Dictyostelium/fisiología , Enterobacteriaceae/fisiología , Cadena Alimentaria , Glucósidos/metabolismo , Nematodos/fisiología , Animales , Caenorhabditis elegans/fisiología , Quimiotaxis , Hidrólisis , India , Especificidad de la Especie
14.
PLoS Genet ; 6(11): e1001200, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21079789

RESUMEN

UNC-104/KIF1A is a Kinesin-3 motor that transports synaptic vesicles from the cell body towards the synapse by binding to PI(4,5)P(2) through its PH domain. The fate of the motor upon reaching the synapse is not known. We found that wild-type UNC-104 is degraded at synaptic regions through the ubiquitin pathway and is not retrogradely transported back to the cell body. As a possible means to regulate the motor, we tested the effect of cargo binding on UNC-104 levels. The unc-104(e1265) allele carries a point mutation (D1497N) in the PI(4,5)P(2) binding pocket of the PH domain, resulting in greatly reduced preferential binding to PI(4,5)P(2)in vitro and presence of very few motors on pre-synaptic vesicles in vivo. unc-104(e1265) animals have poor locomotion irrespective of in vivo PI(4,5)P(2) levels due to reduced anterograde transport. Moreover, they show highly reduced levels of UNC-104 in vivo. To confirm that loss of cargo binding specificity reduces motor levels, we isolated two intragenic suppressors with compensatory mutations within the PH domain. These show partial restoration of in vitro preferential PI(4,5)P(2) binding and presence of more motors on pre-synaptic vesicles in vivo. These animals show improved locomotion dependent on in vivo PI(4,5)P(2) levels, increased anterograde transport, and partial restoration of UNC-104 protein levels in vivo. For further proof, we mutated a conserved residue in one suppressor background. The PH domain in this triple mutant lacked in vitro PI(4,5)P(2) binding specificity, and the animals again showed locomotory defects and reduced motor levels. All allelic variants show increased UNC-104 levels upon blocking the ubiquitin pathway. These data show that inability to bind cargo can target motors for degradation. In view of the observed degradation of the motor in synaptic regions, this further suggests that UNC-104 may get degraded at synapses upon release of cargo.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Procesamiento Proteico-Postraduccional , Alelos , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/química , Secuencia Conservada/genética , Genes Supresores , Proteínas Fluorescentes Verdes/metabolismo , Cinesinas/química , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/química , Neuronas/citología , Neuronas/metabolismo , Fenotipo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Ubiquitina/metabolismo
15.
bioRxiv ; 2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36865111

RESUMEN

Synaptic vesicle proteins (SVps) are thought to travel in heterogeneous carriers dependent on the motor UNC-104/KIF1A. In C. elegans neurons, we found that some SVps are transported along with lysosomal proteins by the motor UNC-104/KIF1A. LRK-1/LRRK2 and the clathrin adaptor protein complex AP-3 are critical for the separation of lysosomal proteins from SVp transport carriers. In lrk-1 mutants, both SVp carriers and SVp carriers containing lysosomal proteins are independent of UNC-104, suggesting that LRK-1 plays a key role in ensuring UNC-104-dependent transport of SVps. Additionally, LRK-1 likely acts upstream of the AP-3 complex and regulates the membrane localization of AP-3. The action of AP-3 is necessary for the active zone protein SYD-2/Liprin-α to facilitate the transport of SVp carriers. In the absence of the AP-3 complex, SYD-2/Liprin-α acts with UNC-104 to instead facilitate the transport of SVp carriers containing lysosomal proteins. We further show that the mistrafficking of SVps into the dendrite in lrk-1 and apb-3 mutants depends on SYD-2, likely by regulating the recruitment of the AP-1/UNC-101. We propose that SYD-2 acts in concert with both the AP-1 and AP-3 complexes to ensure polarized trafficking of SVps.

16.
J Neurosci ; 31(6): 2216-24, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21307258

RESUMEN

Kinesin-1 is a microtubule plus-end-directed motor that transports various cargos along the axon. Previous studies have elucidated the physical and genetic interactions between kinesin-1 and cytoplasmic dynein, a microtubule minus-end-directed motor, in neuronal cells. However, the physiological importance of kinesin-1 in the dynein-dependent retrograde transport of cargo molecules remains obscure. Here, we show that Caenorhabditis elegans kinesin-1 forms a complex with dynein via its interaction with UNC-16, which binds to the dynein light intermediate (DLI) chain. Both kinesin-1 and UNC-16 are required for localization of DLI-1 at the plus ends of nerve process microtubules. In addition, retrograde transport of APL-1 depends on kinesin-1, UNC-16, and dynein. These results suggest that kinesin-1 mediates the anterograde transport of dynein using UNC-16 as a scaffold and that dynein in turn mediates the retrograde transport of cargo molecules in vivo. Thus, UNC-16 functions as an adaptor for kinesin-1-mediated transport of dynein.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Dineínas Citoplasmáticas/metabolismo , Cinesinas/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Biológico , Células COS , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Chlorocebus aethiops , Dineínas Citoplasmáticas/genética , Dineínas/metabolismo , Regulación de la Expresión Génica/fisiología , Inmunoprecipitación/métodos , Cinesinas/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mecanorreceptores/citología , Mecanorreceptores/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microinyecciones/métodos , Terminales Presinápticos/metabolismo , Unión Proteica , Transporte de Proteínas/genética , Transfección/métodos
17.
Curr Opin Cell Biol ; 78: 102121, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030563

RESUMEN

Some organelles show a spatial gradient of maturation along the neuronal process where more mature organelles are found closer to the cell body. This gradient is set up by progressive maturation steps that are aided by differential organelle distribution as well as transport. Autophagosomes and endosomes mature as they acquire lysosomal membrane proteins and decrease their luminal pH as they are retrogradely transported towards the cell body. The acquisition of lysosomal proteins along the neuronal processes likely occurs through fusion or membrane exchange events with Golgi-derived donor transport carriers that are transported anterogradely from the cell body. The mechanisms by which endosomes and autophagosomes mature might be applicable to other organelles that are transported along neuronal processes. Defects in axonal transport may also contribute to the accumulation of immature organelles in neurons. Such accumulations have been seen in neurons of neurodegenerative models.


Asunto(s)
Transporte Axonal , Axones , Transporte Axonal/fisiología , Axones/metabolismo , Endosomas/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Neuronas/metabolismo , Orgánulos/metabolismo
18.
J Vis Exp ; (182)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35467659

RESUMEN

Caenorhabditis elegans (C. elegans) have proved to be a valuable model system for studying developmental and cell biological processes. Understanding these biological processes often requires long-term and repeated imaging of the same animal. Long recovery times associated with conventional immobilization methods done on agar pads have detrimental effects on animal health making it inappropriate to repeatedly image the same animal over long periods of time. This paper describes a microfluidic chip design, fabrication method, on-chip C. elegans culturing protocol, and three examples of long-term imaging to study developmental processes in individual animals. The chip, fabricated with polydimethylsiloxane and bonded on a cover glass, immobilizes animals on a glass substrate using an elastomeric membrane that is deflected using nitrogen gas. Complete immobilization of C. elegans enables robust time-lapse imaging of cellular and sub-cellular events in an anesthetic-free manner. A channel geometry with a large cross-section allows the animal to move freely within two partially sealed isolation membranes permitting growth in the channel with a continuous food supply. Using this simple chip, imaging of developmental phenomena such as neuronal process growth, vulval development, and dendritic arborization in the PVD sensory neurons, as the animal grows inside the channel, can be performed. The long-term growth and imaging chip operates with a single pressure line, no external valves, inexpensive fluidic consumables, and utilizes standard worm handling protocols that can easily be adapted by other laboratories using C. elegans.


Asunto(s)
Fenómenos Biológicos , Microfluídica , Animales , Caenorhabditis elegans/fisiología , Diagnóstico por Imagen , Microfluídica/métodos
19.
Methods Mol Biol ; 2431: 499-530, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412295

RESUMEN

Axonal transport is an essential component of neuronal function. Several neurodegenerative disorders have been associated with defects in cargo transport. Thus, studying axonal transport is important to understand such disorders. Live imaging of fluorescently labeled cargo is a prevailing technique to study properties of axonal transport. C. elegans is both transparent and genetically amenable, making it an excellent model system to study axonal transport. In this chapter, we describe protocols to live image several neuronal cargo in vivo in C. elegans neurons.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Transporte Axonal/fisiología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas/metabolismo
20.
Sci Rep ; 12(1): 14003, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35977998

RESUMEN

Microtubules are fundamental elements of neuronal structure and function. They are dynamic structures formed from protofilament chains of α- and ß-tubulin heterodimers. Acetylation of the lysine 40 (K40) residue of α-tubulin protects microtubules from mechanical stresses by imparting structural elasticity. The enzyme responsible for this acetylation event is MEC-17/αTAT1. Despite its functional importance, however, the consequences of altered MEC-17/αTAT1 levels on neuronal structure and function are incompletely defined. Here we demonstrate that overexpression or loss of MEC-17, or of its functional paralogue ATAT-2, causes a delay in synaptic branch extension, and defective synaptogenesis in the mechanosensory neurons of Caenorhabditis elegans. Strikingly, by adulthood, the synaptic branches in these animals are lost, while the main axon shaft remains mostly intact. We show that MEC-17 and ATAT-2 regulate the stability of the synaptic branches largely independently from their acetyltransferase domains. Genetic analyses reveals novel interactions between both mec-17 and atat-2 with the focal adhesion gene zyx-1/Zyxin, which has previously been implicated in actin remodelling. Together, our results reveal new, acetylation-independent roles for MEC-17 and ATAT-2 in the development and maintenance of neuronal architecture.


Asunto(s)
Proteínas de Caenorhabditis elegans , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA