Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Funct Mater ; 28(21): 1800618, 2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29875619

RESUMEN

An auxetic conductive cardiac patch (AuxCP) for the treatment of myocardial infarction (MI) is introduced. The auxetic design gives the patch a negative Poisson's ratio, providing it with the ability to conform to the demanding mechanics of the heart. The conductivity allows the patch to interface with electroresponsive tissues such as the heart. Excimer laser microablation is used to micropattern a re-entrant honeycomb (bow-tie) design into a chitosan-polyaniline composite. It is shown that the bow-tie design can produce patches with a wide range in mechanical strength and anisotropy, which can be tuned to match native heart tissue. Further, the auxetic patches are conductive and cytocompatible with murine neonatal cardiomyocytes in vitro. Ex vivo studies demonstrate that the auxetic patches have no detrimental effect on the electrophysiology of both healthy and MI rat hearts and conform better to native heart movements than unpatterned patches of the same material. Finally, the AuxCP applied in a rat MI model results in no detrimental effect on cardiac function and negligible fibrotic response after two weeks in vivo. This approach represents a versatile and robust platform for cardiac biomaterial design and could therefore lead to a promising treatment for MI.

2.
Sci Rep ; 14(1): 19640, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179630

RESUMEN

In recent years, research on hyperdoped semiconductors has accelerated, displaying dopant concentrations far exceeding solubility limits to surpass the limitations of conventionally doped materials. Nitrogen defects in silicon have been extensively investigated for their unique characteristics compared to other pnictogen dopants. However, previous practical investigations have encountered challenges in achieving high nitrogen defect concentrations due to the low solubility and diffusivity of nitrogen in silicon, and the necessary non-equilibrium techniques, such as ion implantation, resulting in crystal damage and amorphisation. In this study, we present a single-step technique called high-pressure gas immersion excimer laser doping (HP-GIELD) to manufacture nitrogen-hyperdoped silicon. Our approach offers ultrafast processing, scalability, high control, and reproducibility. Employing HP-GIELD, we achieved nitrogen concentrations exceeding 6 at% (3.01 × 1021 at/cm3) in intrinsic silicon. Notably, nitrogen concentration remained above the liquid solubility limit to ~1 µm in depth. HP-GIELD's high-pressure environment effectively suppressed physical surface damage and the generation of silicon dangling bonds, while the well-known effects of pulsed laser annealing (PLA) preserved crystallinity. Additionally, we conducted a theoretical analysis of light-matter interactions and thermal effects governing nitrogen diffusion during HP-GIELD, which provided insights into the doping mechanism. Leveraging excimer lasers, our method is well-suited for integration into high-volume semiconductor manufacturing, particularly front-end-of-line processes.

3.
Sci Rep ; 12(1): 14986, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056036

RESUMEN

Transparent conductive oxides are appealing materials for optoelectronic and plasmonic applications as, amongst other advantages, their properties can be modulated by engineering their defects. Optimisation of this adjustment is, however, a complex design problem. This work examined the modification of the carrier transport properties of sputtered tin-doped indium oxide (ITO) via laser annealing in reactive environments. We relate the optical modifications to the structural, compositional, and electronic properties to elucidate the precise mechanisms behind the reactive laser annealing (ReLA) process. For sufficiently high laser fluence, we reveal an ambient-dependent and purely compositional modulation of the carrier concentration of ITO thin films. Hereby, we demonstrate that ReLA utilises the precise energy delivery of photonic processing to enhance the carrier mobility and finely tune the carrier concentration without significantly affecting the crystal structure. Exploitation of this phenomena may enable one to selectively engineer the optoelectronic properties of ITO, promising an alternative to the exploration of new materials for optoelectronic and photonic applications.

4.
Nanoscale ; 8(15): 8236-44, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27031573

RESUMEN

Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technological challenge calls for the development of ultra-fast, high-throughput and low-cost fabrication techniques. Laser processing, accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability. In the present work we take advantage of the ability to tune the laser wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, and demonstrate the utilization of different optical absorption mechanisms that are size-selective and enable the fabrication of pre-determined patterns of metal nanostructures. Thus, we overcome the greatest challenge of Laser Induced Self Assembly by combining simultaneously large-scale character with atomic-scale precision. The proposed process can serve as a platform that will stimulate further progress towards the engineering of plasmonic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA