Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(17): 5320-5333, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35727701

RESUMEN

Subterranean ventilation is a non-diffusive transport process that provokes the abrupt transfer of CO2 -rich air (previously stored) through water-free soil pores and cracks from the vadose zone to the atmosphere, under high-turbulence conditions. In dryland ecosystems, whose biological carbon exchanges are poorly characterized, it can strongly determine eddy-covariance CO2 fluxes that are used to validate remote sensing products and constrain models of gross primary productivity. Although subterranean ventilation episodes (VE) may occur in arid and semi-arid regions, which are unsung players in the global carbon cycle, little research has focused on the role of VE CO2 emissions in land-atmosphere CO2 exchange. This study shows clear empirical evidence of globally occurring VE. To identify VE, we used in situ quality-controlled eddy-covariance open data of carbon fluxes and ancillary variables from 145 sites in different open land covers (grassland, cropland, shrubland, savanna, and barren) across the globe. We selected the analyzed database from the FLUXNET2015, AmeriFlux, OzFlux, and AsiaFlux networks. To standardize the analysis, we designed an algorithm to detect CO2 emissions produced by VE at all sites considered in this study. Its main requirement is the presence of considerable and non-spurious correlation between the friction velocity (i.e., turbulence) and CO2 emissions. Of the sites analyzed, 34% exhibited the occurrence of VE. This vented CO2 emerged mainly from arid ecosystems (84%) and sites with hot and dry periods. Despite some limitations in data availability, this research demonstrates that VE-driven CO2 emissions occur globally. Future research should seek a better understanding of its drivers and the improvement of partitioning models, to reduce uncertainties in estimated biological CO2 exchanges and infer their contribution to the global net ecosystem carbon balance.


Asunto(s)
Dióxido de Carbono , Ecosistema , Carbono , Ciclo del Carbono , Viento
2.
Nature ; 447(7146): 848-50, 2007 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-17568744

RESUMEN

Temperate and boreal forests in the Northern Hemisphere cover an area of about 2 x 10(7) square kilometres and act as a substantial carbon sink (0.6-0.7 petagrams of carbon per year). Although forest expansion following agricultural abandonment is certainly responsible for an important fraction of this carbon sink activity, the additional effects on the carbon balance of established forests of increased atmospheric carbon dioxide, increasing temperatures, changes in management practices and nitrogen deposition are difficult to disentangle, despite an extensive network of measurement stations. The relevance of this measurement effort has also been questioned, because spot measurements fail to take into account the role of disturbances, either natural (fire, pests, windstorms) or anthropogenic (forest harvesting). Here we show that the temporal dynamics following stand-replacing disturbances do indeed account for a very large fraction of the overall variability in forest carbon sequestration. After the confounding effects of disturbance have been factored out, however, forest net carbon sequestration is found to be overwhelmingly driven by nitrogen deposition, largely the result of anthropogenic activities. The effect is always positive over the range of nitrogen deposition covered by currently available data sets, casting doubts on the risk of widespread ecosystem nitrogen saturation under natural conditions. The results demonstrate that mankind is ultimately controlling the carbon balance of temperate and boreal forests, either directly (through forest management) or indirectly (through nitrogen deposition).


Asunto(s)
Carbono/metabolismo , Clima , Ecosistema , Actividades Humanas , Árboles/metabolismo , Nitrógeno/metabolismo
3.
Sci Rep ; 8(1): 8570, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29872104

RESUMEN

Biosphere-atmosphere water and carbon fluxes depend on ecosystem structure, and their magnitudes and seasonal behavior are driven by environmental and biological factors. We studied the seasonal behavior of net ecosystem CO2 exchange (NEE), Gross Primary Productivity (GPP), Ecosystem Respiration (RE), and actual evapotranspiration (ETa) obtained by eddy covariance measurements during two years in a Mediterranean Acacia savanna ecosystem (Acacia caven) in Central Chile. The annual carbon balance was -53 g C m-2 in 2011 and -111 g C m-2 in 2012, showing that the ecosystem acts as a net sink of CO2, notwithstanding water limitations on photosynthesis observed in this particularly dry period. Total annual ETa was of 128 mm in 2011 and 139 mm in 2012. Both NEE and ETa exhibited strong seasonality with peak values recorded in the winter season (July to September), as a result of ecosystem phenology, soil water content and rainfall occurrence. Consequently, the maximum carbon assimilation rate occurred in wintertime. Results show that soil water content is a major driver of GPP and RE, defining their seasonal patterns and the annual carbon assimilation capacity of the ecosystem, and also modulating the effect that solar radiation and air temperature have on NEE components at shorter time scales.

4.
Tree Physiol ; 20(1): 23-32, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12651523

RESUMEN

A dynamic, closed-chamber infrared gas analysis (IRGA) system (DC-1: CIRAS-1, PP-Systems, Hitchin, U.K.) was compared with three other systems for measuring soil CO(2) efflux: the soda lime technique (SL), the eddy correlation technique (EC), and another dynamic, closed-chamber IRGA system (DC-2: LI-6250, Li-Cor, Inc., Lincoln, NE). Among the four systems, the DC-1 systematically gave the highest flux rates. Relative to DC-1, SL, EC and DC-2 underestimated fluxes by 10, 36 and 46%, respectively. These large and systematic differences highlight uncertainties in comparing fluxes from different sites obtained with different techniques. Although the three chamber methods gave different results, the results were well correlated. The SL technique underestimated soil CO(2) fluxes compared with the DC-1 system, but both methods agreed well when the SL data were corrected for the underestimation at higher fluxes, indicating that inter-site comparisons are possible if techniques are properly crosscalibrated. The EC was the only system that was not well correlated with DC-1. Under low light conditions, EC values were similar to DC-1 estimates, but under high light conditions the EC system seriously underestimated soil fluxes. This was probably because of interference by the photosynthetic activity of a moss layer. Although below-canopy EC fluxes are not necessarily well suited for measuring soil CO(2) efflux in natural forest ecosystems, they provide valuable information about understory gas exchange when used in tandem with soil chambers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA