Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Infect Dis ; 227(11): 1282-1292, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36461942

RESUMEN

BACKGROUND: Antibody-driven complement system (CS) activation has been associated with protection against symptomatic dengue virus (DENV) infection. Aggregation, opsonization, lysis, and phagocytosis are mechanisms triggered by antibody-antigen immunocomplexes following fixation of the component 1q (C1q) and activation of the classical pathway. As a result, DENV neutralization and clearance are facilitated, whereas antibody-dependent enhancement of infection is inhibited. We investigated the ability of antibodies produced in response to Takeda's dengue vaccine candidate, TAK-003, to fix C1q and activate CS. METHODS: Serum samples were collected from seronegative and seropositive participants in a phase 2 clinical trial (DEN-203), pre- and postvaccination. Samples were evaluated for the presence of complement-fixing antibodies (CFAs) against DENV using a Luminex multiplex-based immunoassay. RESULTS: TAK-003 elicited production of CFAs against all 4 DENV serotypes, which persisted for 1 year postvaccination, irrespective of baseline serostatus. CFA levels were correlated with neutralizing antibody titers and virus-binding total IgG and IgG1 concentrations. Furthermore, efficiency of CFA fixation was greater in samples with higher polyclonal IgG avidity. CONCLUSIONS: These results indicate that antibodies produced after TAK-003 vaccination are functional in both activating CS and neutralizing virus infection by all DENV serotypes, which may contribute to efficacy of TAK-003. CLINICAL TRIALS REGISTRATION: NCT01511250.


Asunto(s)
Vacunas contra el Dengue , Virus del Dengue , Dengue , Humanos , Anticuerpos Neutralizantes , Complemento C1q , Proteínas del Sistema Complemento , Inmunoglobulina G , Vacunas Atenuadas
2.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34769432

RESUMEN

Antibodies capable of activating the complement system (CS) when bound with antigen are referred to as "complement-fixing antibodies" and are involved in protection against Flaviviruses. A complement-fixing antibody test has been used in the past to measure the ability of dengue virus (DENV)-specific serum antibodies to activate the CS. As originally developed, the test is time-consuming, cumbersome, and has limited sensitivity for DENV diagnosis. Here, we developed and characterized a novel multiplex anti-DENV complement-fixing assay based on the Luminex platform to quantitate serum antibodies against all four serotypes (DENV1-4) that activate the CS based on their ability to fix the complement component 1q (C1q). The assay demonstrated good reproducibility and showed equivalent performance to a DENV microneutralization assay that has been used to determine DENV serostatus. In non-human primates, antibodies produced in response to primary DENV1-4 infection induced C1q fixation on homologous and heterologous serotypes. Inter-serotype cross-reactivity was associated with homology of the envelope protein. Interestingly, the antibodies produced following vaccination against Zika virus fixed C1q on DENV. The anti-DENV complement fixing antibody assay represents an alternative approach to determine the quality of functional antibodies produced following DENV natural infection or vaccination and a biomarker for dengue serostatus, while providing insights about immunological cross-reactivity among different Flaviviruses.


Asunto(s)
Anticuerpos Antivirales/inmunología , Complemento C1q/inmunología , Pruebas de Fijación del Complemento/métodos , Virus del Dengue/inmunología , Dengue/inmunología , Animales , Anticuerpos Antivirales/sangre , Bioensayo , Reacciones Cruzadas/inmunología , Dengue/metabolismo , Dengue/virología , Humanos , Macaca , Masculino , Reproducibilidad de los Resultados , Serogrupo
3.
Immun Ageing ; 14: 8, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28413427

RESUMEN

BACKGROUND: A preventative strategy for Respiratory Syncytial Virus (RSV) infection constitutes an under-recognized unmet medical need among older adults. Four formulations of a novel recombinant RSV F nanoparticle vaccine (60 or 90 µg RSV F protein, with or without aluminum phosphate adjuvant) administered concurrently with a licensed inactivated trivalent influenza vaccine (TIV) in older adult subjects were evaluated for safety and immunogenicity in this randomized, observer-blinded study. RESULTS: A total of 220 healthy males and females ≥ 60 years of age, without symptomatic cardiopulmonary disease, were vaccinated concurrently with TIV and RSV F vaccine or placebo. All vaccine formulations produced an acceptable safety profile, with no vaccine-related serious adverse events or evidence of systemic toxicity. Vaccine-induced immune responses were rapid, rising as early as 7 days post-vaccination; and were comparable in all formulations in terms of magnitude, with maximal levels attained within 28 (unadjuvanted) or 56 (adjuvanted) days post-vaccination. Peak anti-F protein IgG antibody levels rose 3.6- to 5.6-fold, with an adjuvant effect observed at the 60 µg dose, and a dose-effect observed between the unadjuvanted 60 and 90 µg regimens. The anti-F response persisted through 12 months post-vaccination. Palivizumab-competitive antibodies were below quantifiable levels (<33 µg/mL) at day 0. The rise of antibodies with specificity for Site II peptide, and the palivizumab-competitive binding activity, denoting antibodies binding at, or in proximity to, antigenic Site II on the F protein, closely paralleled the anti-F response. However, a larger proportion of antibodies in adjuvanted vaccine recipients bound to the Site II peptide at high avidity. Day 0 neutralizing antibodies were high in all subjects and rose 1.3- to 1.7-fold in response to vaccination. Importantly, the RSV F vaccine co-administered with TIV did not impact the serum hemagglutination inhibition antibody responses to a standard-dose TIV, and TIV did not impact the immune response to the RSV F vaccine. CONCLUSIONS: RSV F protein nanoparticle vaccine induced increases in measures of functional immunity to RSV in older adults and demonstrated an acceptable safety profile. Adjuvanted formulations provided additional immunogenicity benefit as compared to increasing antigen dose alone. This trial was registered with ClinicalTrials.gov number NCT01709019.

4.
J Infect Dis ; 213(3): 411-22, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26259809

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is a leading cause of infant morbidity and mortality. A recombinant RSV fusion protein nanoparticle vaccine (RSV F vaccine) candidate for maternal immunization was tested for safety and immunogenicity in women of childbearing age. METHODS: Three hundred thirty women (18-35 years) were randomized to receive 1 or 2 doses of RSV F vaccine (60 or 90 µg) with or without aluminum phosphate adjuvant, or placebo at days 0 and 28. Safety was evaluated over 180 days; immunogenicity and RSV infection rates were evaluated over 112 days. RESULTS: All vaccine formulations were well tolerated, without vaccine-related serious adverse events. Anti-F immunoglobulin G antibodies rose 6.5-15.6-fold, with significantly higher levels in 2-dose, adjuvanted regimens at day 56. Palivizumab-competitive antibody levels were undetectable at day 0 but increased up to 325 µg/mL at day 56. A 2.7- and 3.5-fold rise in RSV/A and RSV/B microneutralization antibodies were noted at day 56. Between days 56 and 112, 21% (12/56) of placebo recipients and 11% of vaccinees (26/244) showed evidence of a recent RSV infection (P = .04). CONCLUSIONS: The vaccine appeared safe, immunogenic, and reduced RSV infections. Further development as a vaccine for use in maternal immunization is warranted. CLINICAL TRIALS REGISTRATION: NCT01704365.


Asunto(s)
Proteínas Recombinantes de Fusión/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitiales Respiratorios/inmunología , Vacunas Virales , Adyuvantes Inmunológicos/administración & dosificación , Adolescente , Adulto , Anticuerpos Antivirales/sangre , Relación Dosis-Respuesta Inmunológica , Femenino , Humanos , Inmunoglobulina G/sangre , Nanopartículas , Vacunas Virales/inmunología , Vacunas Virales/normas , Adulto Joven
5.
Microorganisms ; 12(7)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39065260

RESUMEN

We previously reported the first-in-human assessment of three doses (2, 5, and 10 µg) of purified inactivated Zika virus vaccine (PIZV or TAK-426) in the Phase 1 ZIK-101 study (NCT03343626). Here, we report dose selection based on extended safety and immunogenicity data (6 months post-vaccination) and discuss considerations (e.g., immunological, historic, flavivirus immunological cross-reactions) for selecting a Zika virus (ZIKV) vaccine dose formulation. TAK-426 dose selection was conducted at the first interim analysis, and was based on cumulative safety data from both flavivirus-naïve (up to ≥28 days post-dose PD2) and flavivirus-primed participants (up to ≥28 days PD1), and on immunogenicity data from flavivirus-naïve participants only (at 28 days PD1 and 28 days PD2). The safety profile from TAK-426 recipients was compared to placebo recipients. Immunogenicity was assessed by geometric mean titer ratios of neutralizing anti-ZIKV antibodies and differences in seroconversion rates. There was no significant difference in safety between the three TAK-426 doses. The 10 µg dose provided the earliest and strongest immune response (with close to 100% seroconversion and higher antibody titers PD1 in flavivirus-naïve participants), and was well tolerated with acceptable safety profiles in both flavivirus-naïve and flavivirus-primed participants; this dose was selected for further development.

6.
Microorganisms ; 12(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930559

RESUMEN

A traditional phase 3 clinical efficacy study for a Zika vaccine may be unfeasible because of the current low transmission of Zika virus (ZIKV). An alternative clinical development approach to evaluate Zika vaccine efficacy (VE) is therefore required, delineated in the US FDA's Accelerated Approval Program for licensure, which utilizes an anti-Zika neutralizing antibody (Zika NAb) titer correlated with non-human primate (NHP) protection as a surrogate endpoint. In this accelerated approval approach, the estimation of VE would be inferred from the percentage of phase 3 trial participants achieving the established surrogate endpoint. We provide a statistical framework to predict the probability of protection for human participants vaccinated with a purified inactivated ZIKV vaccine (TAK-426), in the absence of VE measurements, using NHP data under a single-correlate model. Based on a logistic regression (LR) with bias-reduction model, a probability of 90% protection in humans is expected with a ZIKV NAb geometric mean titer (GMT) ≥ 3.38 log10 half-maximal effective concentration (EC50). The predicted probability of protection of TAK-426 against ZIKV infection was determined using the two-parameter LR model that fit the calculated VE in rhesus macaques and the flavivirus-naïve phase 1 trial participants' ZIKV NAb GMTs log10 EC50, measured by a ZIKV reporter virus particle assay, at 1 month post dose 2. The TAK-426 10 µg dose predicted a probability of protection from infection of 98% among flavivirus-naïve phase 1 trial participants.

7.
J Virol ; 85(21): 10945-54, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21865396

RESUMEN

Transmission of pathogenic avian influenza viruses (AIV) from wild birds to domestic poultry and humans is continuing in multiple countries around the world. In preparation for a potential AIV pandemic, multiple vaccine candidates are under development. In the case of H5N1 AIV, a clear shift in transmission from clade 1 to clade 2 viruses occurred in recent years. The virus-like particle (VLP) represents an economical approach to pandemic vaccine development. In the current study, we evaluated the humoral immune response in humans vaccinated with H5N1 A/Indonesia/05/2005 (clade 2.1) VLP vaccine manufactured in Sf9 insect cells. The VLPs were comprised of the influenza virus hemagglutinin (HA), neuraminidase (NA), and matrix 1 (M1) proteins. In an FDA-approved phase I/II human clinical study, two doses of H5N1 VLPs at 15, 45, or 90 µg HA/dose resulted in seroconversion and production of functional antibodies. Moreover, cross-reactivity against other clade 2 subtypes was demonstrated using virus neutralization assays. H5N1 whole-genome fragment phage display libraries (GFPDL) were used to elucidate the antibody epitope repertoire in postvaccination human sera. Diverse epitopes in HA1/HA2 and NA were recognized by postvaccination sera from the two high-dose groups, including large segments spanning the HA1 receptor binding domain. Importantly, the vaccine elicited sera that preferentially bound to an oligomeric form of recombinant HA1 compared with monomeric HA1. The oligomeric/monomeric HA1 binding ratios of the sera correlated with the virus neutralizing titers. Additionally, the two high-dose VLP vaccine groups generated NA-inhibiting antibodies that were associated with binding to a C-terminal epitope close to the sialic acid binding site. These findings represent the first report describing the quality of the antibody responses in humans following AIV VLP immunization and support further development of such vaccines against emerging influenza virus strains.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Reacciones Cruzadas , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Animales , Línea Celular , Mapeo Epitopo , Humanos , Neuraminidasa/inmunología , Pruebas de Neutralización , Unión Proteica , Spodoptera , Vacunas de Virosoma/inmunología , Proteínas Virales/inmunología
8.
Vaccine ; 35(30): 3749-3759, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28579233

RESUMEN

OBJECTIVE: Respiratory syncytial virus (RSV) causes significant morbidity and mortality in infants. We are developing an RSV fusion (F) protein nanoparticle vaccine for immunization of third trimester pregnant women to passively protect infants through transfer of RSV-specific maternal antibodies. The present trial was performed to assess the immunogenicity and safety of several formulations of RSV F vaccine in 1-dose or 2-dose schedules. METHODS: Placebo, or vaccine with 60µg or 120µg RSV F protein and 0.2, 0.4, or 0.8mg aluminum, were administered intramuscularly on Days 0 and 28 to healthy women 18-35years old. Immunogenicity was assessed from Days 0 through 91 based on anti-F IgG and palivizumab-competitive antibody (PCA) by ELISA, and RSV A and B neutralizing antibodies by microneutralization (MN) assay. Solicited adverse events were collected through Day 7 and unsolicited adverse events through Day 91. RESULTS: All formulations were well-tolerated, with no treatment-related serious adverse events. Anti-F IgG and PCA responses were correlated and increased after both doses, while MN increased significantly only after the first dose, then plateaued. The timeliest and most robust antibody responses followed one dose of 120µg RSV F protein and 0.4mg aluminum, but persistence through 91days was modestly (∼25%) superior following two doses of 60µg RSV F protein and 0.8mg aluminum. Western blot analysis showed RSV infections in active vaccinees were reduced by 52% overall (p=0.009 overall) over the Day 0 through 90 period. CONCLUSIONS: RSV F nanoparticle vaccine formulations were well tolerated and immunogenic. The optimal combination of convenience and rapid response for immunization in the third trimester occurred with 120µg RSV F and 0.4mg aluminum, which achieved peak immune responses in 14days and sufficient persistence through 91days to allow for passive transfer of IgG antibodies to the fetus. NCT01960686.


Asunto(s)
Adyuvantes Inmunológicos , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Proteínas Virales de Fusión/inmunología , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Relación Dosis-Respuesta Inmunológica , Femenino , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina G/sangre , Embarazo , Complicaciones Infecciosas del Embarazo/prevención & control , Infecciones por Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/efectos adversos , Vacunas de Partículas Similares a Virus/genética , Proteínas Virales de Fusión/administración & dosificación , Adulto Joven
9.
Vaccine ; 34(16): 1927-35, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26921779

RESUMEN

Ebola virus (EBOV) causes severe hemorrhagic fever for which there is no approved treatment or preventive vaccine. Immunological correlates of protective immunity against EBOV disease are not well understood. However, non-human primate studies have associated protection of experimental vaccines with binding and neutralizing antibodies to the EBOV glycoprotein (GP) as well as EBOV GP-specific CD4(+) and CD8(+) T cells. In this report a full length, unmodified Zaire EBOV GP gene from the 2014 EBOV Makona strain (EBOV/Mak) was cloned into a baculovirus vector. Recombinant EBOV/Mak GP was produced in Sf9 insect cells as glycosylated trimers and, when purified, formed spherical 30-40 nm particles. In mice, EBOV/Mak GP co-administered with the saponin adjuvant Matrix-M was significantly more immunogenic, as measured by virus neutralization titers and anti-EBOV/Mak GP IgG as compared to immunization with AlPO4 adjuvanted or non-adjuvanted EBOV/Mak GP. Similarly, antigen specific T cells secreting IFN-γ were induced most prominently by EBOV/Mak GP with Matrix-M. Matrix-M also enhanced the frequency of antigen-specific germinal center B cells and follicular helper T (TFH) cells in the spleen in a dose-dependent manner. Immunization with EBOV/Mak GP with Matrix-M was 100% protective in a lethal viral challenge murine model; whereas no protection was observed with the AlPO4 adjuvant and only 10% (1/10) mice were protected in the EBOV/Mak GP antigen alone group. Matrix-M adjuvanted vaccine induced a rapid onset of specific IgG and neutralizing antibodies, increased frequency of multifunctional CD4+ and CD8(+) T cells, specific TFH cells, germinal center B cells, and persistence of EBOV GP-specific plasma B cells in the bone marrow. Taken together, the addition of Matrix-M adjuvant to the EBOV/Mak GP nanoparticles enhanced both B and T-cell immune stimulation which may be critical for an Ebola subunit vaccine with broad and long lasting protective immunity.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacunas contra el Virus del Ébola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Nanopartículas , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Ebolavirus , Centro Germinal/citología , Ratones
10.
Vaccine ; 33(47): 6488-92, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26319066

RESUMEN

BACKGROUND: Protection of newborns and young infants against RSV disease via maternal immunization mediated by transplacental transfer of antibodies is under evaluation in third-trimester pregnant women with the RSV recombinant F nanoparticle vaccine (RSV F vaccine). Since the hemichorial placental architecture in guinea pigs and humans is similar, the guinea pig model was employed to assess RSV F vaccine immunogenicity in pregnant sows and to compare RSV-specific maternal antibody levels in their pups. METHODS: Thirty (30) presumptive pregnant guinea pigs were immunized on gestational day 25 and 46 with placebo (PBS), 30µg RSV F, or 30µg RSV F+400µg aluminum phosphate. Sera at delivery/birth (sows/pups) and 15 and 30 days post-partum (pups) were analyzed for the presence of anti-F IgG, palivizumab-competitive antibody (PCA) and RSV/A microneutralization (MN). RESULTS: The rates of pregnancy and stillbirth were similar between controls and vaccinees. The vaccine induced high levels of anti-F IgG, PCA and MN in sows, with the highest levels observed in adjuvanted vaccinees. Placental transfer to pups was proportional to the maternal antibody levels, with concentration effects observed for all immune measures. CONCLUSIONS: The RSV F vaccine was safe and immunogenic in pregnant guinea pigs and supported robust transplacental antibody transfer to their pups. Relative concentration of antibodies in the pups was observed even in the presence of high levels of maternal antibody. Guinea pigs may be an important safety and immunogenicity model for preclinical assessment of candidate vaccines for maternal immunization.


Asunto(s)
Anticuerpos Antivirales/sangre , Inmunidad Materno-Adquirida , Exposición Materna , Vacunas contra Virus Sincitial Respiratorio/inmunología , Proteínas Virales de Fusión/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Compuestos de Aluminio/administración & dosificación , Animales , Anticuerpos Neutralizantes/sangre , Femenino , Cobayas , Inmunoensayo , Inmunoglobulina G/sangre , Fosfatos/administración & dosificación , Placebos/administración & dosificación , Embarazo , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/efectos adversos
11.
J Immunol Methods ; 417: 22-33, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25523923

RESUMEN

BACKGROUND: Qualified or validated assays are essential in clinical trials. Short-term stimulation of whole blood and intracellular cytokine staining assay is commonly used to measure immunogenicity in tuberculosis vaccine clinical trials. Previously, the short-term stimulation process of whole blood with BCG was optimized. We aimed to qualify the intracellular cytokine staining process and assess the effects of long-term cryopreservation. Our hypotheses were that the assay is robust in the measurement of the mycobacteria-specific T cells, and long-term cryopreservation of fixed cells from stimulated whole blood would not compromise reliable measurement of mycobacteria induced CD4 T cell immunity. METHODS: Whole blood from healthy adults was collected in sodium heparinized tubes. The blood was left unstimulated or stimulated with mycobacterial antigens or mitogens for 12h. Cells were harvested, fixed and multiple aliquots from each participant cryopreserved. Later, mycobacteria-specific CD4 and CD8 T cells expressing IFN-γ, TNF-α, IL-2 and IL-17 were quantitated by flow cytometry. Assay performance characteristics evaluated included limit of quantification and detection, reproducibility, precision, robustness, specificity and sensitivity. To assess the effects of long-term cryopreservation, fixed cells from the stimulated bloods were analysed one week post-cryopreservation and at 3-month intervals over a 3-year period. RESULTS: The limit of quantification for the different cytokines was variable: 0.04% for frequencies of IFN-γ- and IL-2-expressing T cells and less than 0.01% for TNF-α- and IL-17-expressing T cells. When measurement of the mycobacteria-specific T cells was assessed at levels above the detection limit, the whole blood intracellular cytokine assay showed high precision that was operator-independent. The assay was also robust: variation in staining conditions including temperature (4 °C or 20-23 °C) and time (45, 60 or 90 min) did not markedly affect quantification of specific T cells. Finally, prolonged periods of cryopreservation also did not significantly influence quantification of mycobacteria-specific CD4 T cells. CONCLUSIONS: The whole blood intracellular cytokine assay is robust and reliable in quantification of the mycobacteria-specific T cells and is not significantly affected by cryopreservation of fixed cells.


Asunto(s)
Vacuna BCG/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/sangre , Mycobacterium bovis/inmunología , Tuberculosis Pulmonar/inmunología , Adulto , Antígenos Bacterianos/inmunología , Criopreservación , Citocinas/inmunología , Citometría de Flujo , Humanos , Interferón gamma/inmunología , Interleucina-17/inmunología , Interleucina-2/inmunología , Límite de Detección , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Coloración y Etiquetado/métodos , Tuberculosis Pulmonar/diagnóstico , Factor de Necrosis Tumoral alfa/inmunología
12.
Vaccine ; 31(3): 524-32, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23153449

RESUMEN

OBJECTIVE: We performed a Phase 1 randomized, observer-blinded, placebo-controlled trial to evaluate the safety and immunogenicity of a recombinant respiratory syncytial virus (RSV) fusion (F) protein nanoparticle vaccine. METHODS: Six formulations with (5, 15, 30 and 60 µg) and without (30 and 60 µg) aluminum phosphate (AdjuPhos) were administered intramuscularly on day 0 and 30 in a dose escalating fashion to healthy adults 18-49 years of age. Solicited and unsolicited events were collected through day 210. Immunogenicity measures taken at day 0, 30 and 60 included RSV A and B microneutralization, anti-F IgG, antigenic site II peptide and palivizumab competitive antibodies. RESULTS: The vaccine was well-tolerated, with no evident dose-related toxicity or attributable SAEs. At day 60 both RSV A and B microneutralization was significantly increased in vaccinees versus placebo. Across all vaccinees there was a 7- to 19-fold increase in the anti-F IgG and a 7- to 24-fold increase in the antigenic site II binding and palivizumab competitive antibodies. CONCLUSIONS: The RSV F nanoparticle vaccine candidate was well tolerated without dose-related increases in adverse events. Measures of immunity indicate that neutralization, anti-RSV F IgG titers and palivizumab competing antibodies were induced at levels that have been associated with decreased risk of hospitalization. NCT01290419.


Asunto(s)
Proteínas Recombinantes de Fusión/efectos adversos , Proteínas Recombinantes de Fusión/inmunología , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Vacunas contra Virus Sincitial Respiratorio/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/efectos adversos , Adolescente , Adulto , Compuestos de Aluminio/administración & dosificación , Compuestos de Aluminio/efectos adversos , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Biotecnología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nanopartículas/administración & dosificación , Nanopartículas/efectos adversos , Fosfatos/administración & dosificación , Fosfatos/efectos adversos , Placebos/administración & dosificación , Placebos/efectos adversos , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/genética , Células Sf9 , Método Simple Ciego , Tecnología Farmacéutica , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas de Virosoma/administración & dosificación , Vacunas de Virosoma/efectos adversos , Vacunas de Virosoma/genética , Vacunas de Virosoma/inmunología , Adulto Joven
13.
Vaccine ; 31(40): 4305-13, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23891795

RESUMEN

The recent emergence of severe human illness caused by avian-origin influenza A(H7N9) viruses in China has precipitated a global effort to rapidly develop and test vaccine candidates. To date, non-A(H7N9) H7 subtype influenza vaccine candidates have been poorly immunogenic and difficulties in production of A(H7N9) virus seed strains have been encountered. A candidate recombinant A(H7N9) vaccine consisting of full length, unmodified hemagglutinin (HA) and neuraminidase (NA) from the A/Anhui/1/2013 and the matrix 1 (M1) protein from the A/Indonesia/05/2005 (H5N1) were cloned into a baculovirus vector. Baculovirus infected Spodoptera frugiperda (Sf9) insect cells secreted virus like particles (VLP) composed of HA, NA, and M1 that resemble mature influenza virions. Genetic construction of vaccine from acquisition of an H7N9 genomic sequence to production of A(H7N9) VLP occurred in 26 days. The immunogenicity and efficacy of A/Anhui/1/2013 (H7N9) VLP vaccine administered on days 0 and 14 were evaluated in a lethal wild-type challenge Balb/c mouse model. Control groups included a non-homologous H7 vaccine (A/chicken/Jalisco/CPA1/2012 (H7N3)-VLP), and A/Indonesia/05/2005 (H5N1)-VLP, or placebo. All vaccines were administered with or without ISCOMATRIX. A(H7N9) VLP elicited hemagglutination-inhibition (HAI) antibody titers of ≥ 1:64 against the homologous virus, cross-reactive HAI against the heterologous A(H7N3), and 3- to 4-fold higher HAI responses in corresponding ISCOMATRIX subgroups. Similarly, all doses of H7N9 VLP elicited anti-neuraminidase (NA) antibody, with 3- to 4-fold higher responses measured in the corresponding ISCOMATRIX subgroups. The non-homologous H7 vaccine induced both H7N3 and H7N9 HAI but no N9 anti-NA antibodies. A lethal murine wild-type A/Anhui/1/2013 (H7N9) challenge demonstrated 100% survival of all animals receiving A(H7N9) and A(H7N3) vaccine, versus 0% survival in A(H5N1) vaccine and placebo groups. Together, the data demonstrate that recombinant H7N9 vaccine can be rapidly developed that was immunogenic and efficacious supporting testing in man as a pandemic influenza H7N9 vaccine candidate.


Asunto(s)
Protección Cruzada/inmunología , Subtipo H7N3 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Vacunas Sintéticas/inmunología , Animales , Anticuerpos Antivirales/inmunología , Baculoviridae/genética , Línea Celular , Pruebas de Inhibición de Hemaglutinación , Hemaglutininas Virales/genética , Hemaglutininas Virales/inmunología , Ratones , Ratones Endogámicos BALB C , Neuraminidasa/genética , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Spodoptera/genética , Spodoptera/metabolismo , Vacunación , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología
14.
Vaccine ; 30(12): 2098-108, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22296955

RESUMEN

BACKGROUND: Despite the availability of Bacille Calmette Guérin (BCG) vaccines, Mycobacterium tuberculosis currently infects billions of people and millions die annually from tuberculosis (TB) disease. New TB vaccines are urgently needed. METHODS: We studied the ability of AERAS-402, a recombinant, replication-deficient adenovirus type 35 expressing the protective M. tuberculosis antigens Ag85A, Ag85B, and TB10.4, to boost BCG immunity in an area of low TB endemicity. RESULTS: In volunteers primed with BCG 3 or 6 months prior to AERAS-402 boosting, significant CD4(+) and CD8(+) T cell responses were induced. Ag85-specific responses were more strongly boosted than TB10.4-specific responses. Frequencies of TB-specific CD8(+) T cells reached>50 fold higher than pre-AERAS boosting levels, remarkably higher than reported in any previous human TB vaccine trial. Multiparameter flow cytometric assays demonstrated that AERAS-402-boosted CD4(+) and CD8(+) T cells were multifunctional, producing multiple cytokines and other immune effector molecules. Furthermore, boosted T cells displayed lymphoproliferative capacity, and tetramer analyses confirmed that antigen-specific CD8(+) T cells were induced. BCG and AERAS-402 vaccinations given 3 and 6 months apart appeared equivalent. CONCLUSIONS: Our results indicate that AERAS-402 is a promising TB vaccine candidate that can significantly enhance both CD4(+) and CD8(+) TB-specific T cell responses after BCG priming. ClinicalTrials.gov Identifier: NCT01378312.


Asunto(s)
Aciltransferasas/inmunología , Adenovirus Humanos/genética , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Vectores Genéticos , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Aciltransferasas/genética , Adulto , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Citocinas/biosíntesis , Citometría de Flujo , Experimentación Humana , Humanos , Mycobacterium tuberculosis/genética , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA