Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Cardiovasc Disord ; 23(1): 232, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138228

RESUMEN

BACKGROUND: ST-segment elevation myocardial infarction (STEMI) still causes significant mortality and morbidity despite best-practice revascularization and adjunct medical strategies. Within the STEMI population, there is a spectrum of higher and lower risk patients with respect to major adverse cardiovascular and cerebral events (MACCE) or re-hospitalization due to heart failure. Myocardial and systemic metabolic disorders modulate patient risk in STEMI. Systematic cardiocirculatory and metabolic phenotyping to assess the bidirectional interaction of cardiac and systemic metabolism in myocardial ischemia is lacking. METHODS: Systemic organ communication in STEMI (SYSTEMI) is an all-comer open-end prospective study in STEMI patients > 18 years of age to assess the interaction of cardiac and systemic metabolism in STEMI by systematically collecting data on a regional and systemic level. Primary endpoint will be myocardial function, left ventricular remodelling, myocardial texture and coronary patency at 6 month after STEMI. Secondary endpoint will be all-cause death, MACCE, and re-hospitalisation due to heart failure or revascularisation assessed 12 month after STEMI. The objective of SYSTEMI is to identify metabolic systemic and myocardial master switches that determine primary and secondary endpoints. In SYSTEMI 150-200 patients are expected to be recruited per year. Patient data will be collected at the index event, within 24 h, 5 days as well as 6 and 12 months after STEMI. Data acquisition will be performed in multilayer approaches. Myocardial function will be assessed by using serial cardiac imaging with cineventriculography, echocardiography and cardiovascular magnetic resonance. Myocardial metabolism will be analysed by multi-nuclei magnetic resonance spectroscopy. Systemic metabolism will be approached by serial liquid biopsies and analysed with respect to glucose and lipid metabolism as well as oxygen transport. In summary, SYSTEMI enables a comprehensive data analysis on the levels of organ structure and function alongside hemodynamic, genomic and transcriptomic information to assess cardiac and systemic metabolism. DISCUSSION: SYSTEMI aims to identify novel metabolic patterns and master-switches in the interaction of cardiac and systemic metabolism to improve diagnostic and therapeutic algorithms in myocardial ischemia for patient-risk assessment and tailored therapy. TRIAL REGISTRATION: Trial Registration Number: NCT03539133.


Asunto(s)
Enfermedad de la Arteria Coronaria , Insuficiencia Cardíaca , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Humanos , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/terapia , Estudios de Cohortes , Estudios Prospectivos , Intervención Coronaria Percutánea/efectos adversos , Enfermedad de la Arteria Coronaria/complicaciones , Insuficiencia Cardíaca/etiología , Resultado del Tratamiento
2.
Proc Natl Acad Sci U S A ; 117(39): 24545-24556, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929035

RESUMEN

The relationship between oxidative stress and cardiac stiffness is thought to involve modifications to the giant muscle protein titin, which in turn can determine the progression of heart disease. In vitro studies have shown that S-glutathionylation and disulfide bonding of titin fragments could alter the elastic properties of titin; however, whether and where titin becomes oxidized in vivo is less certain. Here we demonstrate, using multiple models of oxidative stress in conjunction with mechanical loading, that immunoglobulin domains preferentially from the distal titin spring region become oxidized in vivo through the mechanism of unfolded domain oxidation (UnDOx). Via oxidation type-specific modification of titin, UnDOx modulates human cardiomyocyte passive force bidirectionally. UnDOx also enhances titin phosphorylation and, importantly, promotes nonconstitutive folding and aggregation of unfolded domains. We propose a mechanism whereby UnDOx enables the controlled homotypic interactions within the distal titin spring to stabilize this segment and regulate myocardial passive stiffness.


Asunto(s)
Miocardio/química , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Proteínas Quinasas/metabolismo , Animales , Elasticidad , Masculino , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocitos Cardíacos/química , Oxidación-Reducción , Fosforilación , Proteínas Quinasas/química , Proteínas Quinasas/genética
3.
J Mol Cell Cardiol ; 173: 47-60, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36150524

RESUMEN

Diabetes mellitus type 2 is associated with adverse clinical outcome after myocardial infarction. To better understand the underlying causes we here investigated sarcomere protein function and its calcium-dependent regulation in the non-ischemic remote myocardium (RM) of diabetic mice (db/db) after transient occlusion of the left anterior descending coronary artery. Before and 24 h after surgery db/db and non-diabetic db/+ underwent magnetic resonance imaging followed by histological and biochemical analyses of heart tissue. Intracellular calcium transients and sarcomere function were measured in isolated cardiomyocytes. Active and passive force generation was assessed in skinned fibers and papillary muscle preparations. Before ischemia and reperfusion (I/R), beat-to-beat calcium cycling was depressed in diabetic cardiomyocytes. Nevertheless, contractile function was preserved owing to increased myofilament calcium sensitivity and higher responsiveness of myocardial force production to ß-adrenergic stimulation in db/db compared to db/+. In addition, protein kinase C activity was elevated in db/db hearts leading to strong phosphorylation of the titin PEVK region and increased titin-based tension of myofilaments. I/R impaired the function of whole hearts and RM sarcomeres in db/db to a larger extent than in non-diabetic db/+, and we identified several reasons. First, the amplitude and the kinetics of cardiomyocyte calcium transients were further reduced in the RM of db/db. Underlying causes involved altered expression of calcium regulatory proteins. Diabetes and I/R additively reduced phospholamban S16-phosphorylation by 80% (P < 000.1) leading to strong inhibition of the calcium ATPase SERCA2a. Second, titin stiffening was only observed in the RM of db/+, but not in the RM of db/db. Finally, db/db myofilament calcium sensitivity and force generation upon ß-adrenergic stimulation were no longer enhanced over db/+ in the RM. The findings demonstrate that impaired cardiomyocyte calcium cycling of db/db hearts is compensated by increased myofilament calcium sensitivity and increased titin-based stiffness prior to I/R. In contrast, sarcomere function of the RM 24 h after I/R is poor because both these compensatory mechanisms fail and myocyte calcium handling is further depressed.


Asunto(s)
Diabetes Mellitus Experimental , Infarto del Miocardio , Ratones , Animales , Conectina/metabolismo , Calcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/metabolismo , Reperfusión , Adrenérgicos , Contracción Miocárdica
4.
J Sci Food Agric ; 102(12): 5098-5110, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34231208

RESUMEN

BACKGROUND: In the European Union proteins for food are largely animal based, consisting of meat and dairy products. Almost all soy but also a larger part of pulses and cereals consumed in the European Union are used for animal nutrition. While livestock is an important source of proteins, it also creates substantial environmental impacts. The food and feed system is closely linked to the planetary and health boundaries and a transformation to healthy diets will require substantial dietary shifts towards healthy foods, such as nuts, fruits, vegetables and legumes. RESULTS: Extrudated vegetable meat alternatives consisting of protein combined with amaranth or buckwheat flour and a vegetable milk alternative made from lentil proteins were shown to have the potential to generate significantly less environmental impact than their animal-based counterparts in most of the environmental indicators examined, taking into account both functional units (mass and protein content). The underlying field-to-fork life cycle assessment models include several variants for both plant and animal foods. The optimized plant-based foods show a clear potential for improvement in the environmental footprints. CONCLUSIONS: Development of higher processed and therefore higher performing products is crucial for appealing to potential user groups beyond dedicated vegetarians and vegans and ultimately achieving market expansion. The Protein2Food project showed that prototypes made from European-grown legumes and pseudocereals are a valuable source for high-quality protein foods, and despite being substantially processed they could help reduce the environmental impact of food consumption. © 2021 Society of Chemical Industry.


Asunto(s)
Dieta , Proteínas de Plantas , Alimentación Animal , Animales , Productos Lácteos , Estadios del Ciclo de Vida , Carne , Verduras
5.
Circ Res ; 124(10): 1433-1447, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30916618

RESUMEN

RATIONALE: Immediate changes in the ECM (extracellular matrix) microenvironment occur after myocardial ischemia and reperfusion (I/R) injury. OBJECTIVE: Aim of this study was to unravel the role of the early hyaluronan (HA)-rich ECM after I/R. METHODS AND RESULTS: Genetic deletion of Has2 and Has1 was used in a murine model of cardiac I/R. Chemical exchange saturation transfer imaging was adapted to image cardiac ECM post-I/R. Of note, the cardiac chemical exchange saturation transfer signal was severely suppressed by Has2 deletion and pharmacological inhibition of HA synthesis 24 hours after I/R. Has2 KO ( Has2 deficient) mice showed impaired hemodynamic function suggesting a protective role for endogenous HA synthesis. In contrast to Has2 deficiency, Has1-deficient mice developed no specific phenotype compared with control post-I/R. Importantly, in Has2 KO mice, cardiac macrophages were diminished after I/R as detected by 19F MRI (magnetic resonance imaging) of perfluorcarbon-labeled immune cells, Mac-2/Galectin-3 immunostaining, and FACS (fluorescence-activated cell sorting) analysis (CD45+CD11b+Ly6G-CD64+F4/80+cells). In contrast to macrophages, cardiac Ly6Chigh and Ly6Clow monocytes were unaffected post-I/R compared with control mice. Mechanistically, inhibition of HA synthesis led to increased macrophage apoptosis in vivo and in vitro. In addition, α-SMA (α-smooth muscle actin)-positive cells were reduced in the infarcted myocardium and in the border zone. In vitro, the myofibroblast response as measured by Acta2 mRNA expression was reduced by inhibition of HA synthesis and of CD44 signaling. Furthermore, Has2 KO fibroblasts were less able to contract collagen gels in vitro. The effects of HA/CD44 on fibroblasts and macrophages post-I/R might also affect intercellular cross talk because cardiac fibroblasts were activated by monocyte/macrophages and, in turn, protected macrophages from apoptosis. CONCLUSIONS: Increased HA synthesis contributes to postinfarct healing by supporting macrophage survival and by promoting the myofibroblast response. Additionally, imaging of cardiac HA by chemical exchange saturation transfer post-I/R might have translational value.


Asunto(s)
Matriz Extracelular/fisiología , Hialuronano Sintasas/deficiencia , Ácido Hialurónico/biosíntesis , Macrófagos/fisiología , Daño por Reperfusión Miocárdica/fisiopatología , Cicatrización de Heridas/fisiología , Actinas/metabolismo , Animales , Apoptosis , Comunicación Celular/fisiología , Supervivencia Celular , Microambiente Celular/fisiología , Matriz Extracelular/metabolismo , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/antagonistas & inhibidores , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Monocitos/fisiología , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/citología , Miofibroblastos/metabolismo , Miofibroblastos/fisiología
6.
Circ Res ; 123(3): 342-355, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29760016

RESUMEN

RATIONALE: Increased titin-dependent cardiomyocyte tension is a hallmark of heart failure with preserved ejection fraction associated with type-2 diabetes mellitus. However, the insulin-related signaling pathways that modify titin-based cardiomyocyte tension, thereby contributing to modulation of diastolic function, are largely unknown. OBJECTIVE: We aimed to determine how impaired insulin signaling affects titin expression and phosphorylation and thus increases passive cardiomyocyte tension, and whether metformin or neuregulin-1 (NRG-1) can correct disturbed titin modifications and increased titin-based stiffness. METHODS AND RESULTS: We used cardiac biopsies from human diabetic (n=23) and nondiabetic patients (n=19), cultured rat cardiomyocytes, left ventricular tissue from apolipoprotein E-deficient mice with streptozotocin-induced diabetes mellitus (n=12-22), and ZSF1 (obese diabetic Zucker fatty/spontaneously hypertensive heart failure F1 hybrid) rats (n=5-6) and analyzed insulin-dependent signaling pathways that modulate titin phosphorylation. Titin-based passive tension was measured using permeabilized cardiomyocytes. In human diabetic hearts, we detected titin hypophosphorylation at S4099 and hyperphosphorylation at S11878, suggesting altered activity of protein kinases; cardiomyocyte passive tension was significantly increased. When applied to cultured cardiomyocytes, insulin and metformin increased titin phosphorylation at S4010, S4099, and S11878 via enhanced ERK1/2 (extracellular signal regulated kinase 1/2) and PKCα (protein kinase Cα) activity; NRG-1 application enhanced ERK1/2 activity but reduced PKCα activity. In apolipoprotein E-deficient mice, chronic treatment of streptozotocin-induced diabetes mellitus with NRG-1 corrected titin phosphorylation via increased PKG (protein kinase G) and ERK1/2 activity and reduced PKCα activity, which reversed the diabetes mellitus-associated changes in titin-based passive tension. Acute application of NRG-1 to obese ZSF1 rats with type-2 diabetes mellitus reduced end-diastolic pressure. CONCLUSIONS: Mechanistically, we found that impaired cGMP-PKG signaling and elevated PKCα activity are key modulators of titin-based cardiomyocyte stiffening in diabetic hearts. We conclude that by restoring normal kinase activities of PKG, ERK1/2, and PKCα, and by reducing cardiomyocyte passive tension, chronic NRG-1 application is a promising approach to modulate titin properties in heart failure with preserved ejection fraction associated with type-2 diabetes mellitus.


Asunto(s)
Conectina/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Insulina/farmacología , Miocitos Cardíacos/metabolismo , Neurregulina-1/farmacología , Procesamiento Proteico-Postraduccional , Transducción de Señal , Animales , Células Cultivadas , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Humanos , Hipoglucemiantes/farmacología , Metformina/farmacología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Fosforilación , Proteína Quinasa C-alfa/metabolismo , Ratas , Ratas Zucker
7.
Genes Dev ; 26(2): 114-9, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22241783

RESUMEN

Protein lysine methylation is one of the most widespread post-translational modifications in the nuclei of eukaryotic cells. Methylated lysines on histones and nonhistone proteins promote the formation of protein complexes that control gene expression and DNA replication and repair. In the cytoplasm, however, the role of lysine methylation in protein complex formation is not well established. Here we report that the cytoplasmic protein chaperone Hsp90 is methylated by the lysine methyltransferase Smyd2 in various cell types. In muscle, Hsp90 methylation contributes to the formation of a protein complex containing Smyd2, Hsp90, and the sarcomeric protein titin. Deficiency in Smyd2 results in the loss of Hsp90 methylation, impaired titin stability, and altered muscle function. Collectively, our data reveal a cytoplasmic protein network that employs lysine methylation for the maintenance and function of skeletal muscle.


Asunto(s)
Citoplasma/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Animales , Embrión de Pollo , Conectina , Citoplasma/enzimología , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Lisina/metabolismo , Metilación , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Pez Cebra
9.
J Mol Cell Cardiol ; 119: 28-39, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29674140

RESUMEN

Changes in the nonischemic remote myocardium of the heart contribute to left ventricular dysfunction after ischemia and reperfusion (I/R). Understanding the underlying mechanisms early after I/R is crucial to improve the adaptation of the viable myocardium to increased mechanical demands. Here, we investigated the role of myocyte Ca2+ handling in the remote myocardium 24 h after 60 min LAD occlusion. Cardiomyocytes isolated from the basal noninfarct-related parts of wild type mouse hearts demonstrated depressed beat-to-beat Ca2+ handling. The amplitude of the Ca2+ transients as well as the kinetics of Ca2+ transport were reduced by up to 25%. These changes were associated with impaired sarcomere contraction. While expression levels of Ca2+ regulatory proteins were unchanged in remote myocardium compared to the corresponding regions of sham-operated hearts, mobility shift analyses of phosphorylated protein showed 2.9 ±â€¯0.4-fold more unphosphorylated phospholamban (PLN) monomers, the PLN species that inhibits the Ca2+ ATPase SERCA2a (P ≤ 0.001). Phospho-specific antibodies revealed normal phosphorylation of PLN at T17 in remote myocardium, but markedly reduced phosphorylation at its PKA-dependent phosphorylation site, S16 (P ≤ 0.01). The underlying cause involved enhanced activity of protein phosphatases, particularly PP2A (P ≤ 0.01). In contrast, overall PKA activity was normal. The PLN interactome, as determined by co-immunoprecipitation and mass spectrometry, and the phosphorylation state of PKA targets other than PLN were also unchanged. Isoproterenol enhanced cellular Ca2+ cycling much stronger in remote myocytes than in healthy controls and improved sarcomere function. We conclude that the reduced phosphorylation state of PLN at S16 impairs myocyte Ca2+ cycling in the remote myocardium 24 h after I/R and contributes to contractile dysfunction.


Asunto(s)
Señalización del Calcio/genética , Infarto del Miocardio/genética , Daño por Reperfusión/genética , Disfunción Ventricular Izquierda/genética , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Humanos , Ratones , Contracción Miocárdica/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación , Proteína Fosfatasa 2/genética , Daño por Reperfusión/patología , Sarcómeros/genética , Sarcómeros/metabolismo , Sarcómeros/patología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Disfunción Ventricular Izquierda/fisiopatología
10.
Am J Pathol ; 187(12): 2645-2658, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28935576

RESUMEN

Peripartum cardiomyopathy (PPCM) and dilated cardiomyopathy (DCM) show similarities in clinical presentation. However, although DCM patients do not recover and slowly deteriorate further, PPCM patients show either a fast cardiac deterioration or complete recovery. The aim of this study was to assess if underlying cellular changes can explain the clinical similarities and differences in the two diseases. We, therefore, assessed sarcomeric protein expression, modification, titin isoform shift, and contractile behavior of cardiomyocytes in heart tissue of PPCM and DCM patients and compared these with nonfailing controls. Heart samples from ischemic heart disease (ISHD) patients served as heart failure control samples. Passive force was only increased in PPCM samples compared with controls, whereas PPCM, DCM, and ISHD samples all showed increased myofilament Ca2+ sensitivity. Length-dependent activation was significantly impaired in PPCM compared with controls, no impairment was observed in ISHD samples, and DCM samples showed an intermediate response. Contractile impairments were caused by impaired protein kinase A (PKA)-mediated phosphorylation because exogenous PKA restored all parameters to control levels. Although DCM samples showed reexpression of EH-myomesin, an isoform usually only expressed in the heart before birth, PPCM and ISHD did not. The lack of EH-myomesin, combined with low PKA-mediated phosphorylation of myofilament proteins and increased compliant titin isoform, may explain the increase in passive force and blunted length-dependent activation of myofilaments in PPCM samples.


Asunto(s)
Cardiomiopatías/fisiopatología , Cardiomiopatía Dilatada/fisiopatología , Miocitos Cardíacos/patología , Miofibrillas/patología , Periodo Periparto , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Embarazo
11.
Circ Res ; 119(9): 1017-1029, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27650557

RESUMEN

RATIONALE: Myocardial infarction (MI) increases the wall stress in the viable myocardium and initiates early adaptive remodeling in the left ventricle to maintain cardiac output. Later remodeling processes include fibrotic reorganization that eventually leads to cardiac failure. Understanding the mechanisms that support cardiac function in the early phase post MI and identifying the processes that initiate transition to maladaptive remodeling are of major clinical interest. OBJECTIVE: To characterize MI-induced changes in titin-based cardiac myocyte stiffness and to elucidate the role of titin in ventricular remodeling of remote myocardium in the early phase after MI. METHODS AND RESULTS: Titin properties were analyzed in Langendorff-perfused mouse hearts after 20-minute ischemia/60-minute reperfusion (I/R), and mouse hearts that underwent ligature of the left anterior descending coronary artery for 3 or 10 days. Cardiac myocyte passive tension was significantly increased 1 hour after ischemia/reperfusion and 3 and 10 days after left anterior descending coronary artery ligature. The increased passive tension was caused by hypophosphorylation of the titin N2-B unique sequence and hyperphosphorylation of the PEVK (titin domain rich in proline, glutamate, valine, and lysine) region of titin. Blocking of interleukine-6 before left anterior descending coronary artery ligature restored titin-based myocyte tension after MI, suggesting that MI-induced titin stiffening is mediated by elevated levels of the cytokine interleukine-6. We further demonstrate that the early remodeling processes 3 days after MI involve accelerated titin turnover by the ubiquitin-proteasome system. CONCLUSIONS: We conclude that titin-based cardiac myocyte stiffening acutely after MI is partly mediated by interleukine-6 and is an important mechanism of remote myocardium to adapt to the increased mechanical demands after myocardial injury.


Asunto(s)
Adaptación Fisiológica/fisiología , Conectina/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Remodelación Ventricular/fisiología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Miocitos Cardíacos/patología , Técnicas de Cultivo de Órganos , Fosforilación/fisiología , Embarazo , Ratas , Ratas Wistar
12.
J Physiol ; 595(14): 4677-4693, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28436080

RESUMEN

KEY POINTS: Mutations in genes encoding cardiac troponin I (TNNI3) and cardiac troponin T (TNNT2) caused altered troponin protein stoichiometry in patients with dilated cardiomyopathy. TNNI3p.98trunc resulted in haploinsufficiency, increased Ca2+ -sensitivity and reduced length-dependent activation. TNNT2p.K217del caused increased passive tension. A mutation in the gene encoding Lamin A/C (LMNAp.R331Q ) led to reduced maximal force development through secondary disease remodelling in patients suffering from dilated cardiomyopathy. Our study shows that different gene mutations induce dilated cardiomyopathy via diverse cellular pathways. ABSTRACT: Dilated cardiomyopathy (DCM) can be caused by mutations in sarcomeric and non-sarcomeric genes. In this study we defined the pathogenic effects of three DCM-causing mutations: the sarcomeric mutations in genes encoding cardiac troponin I (TNNI3p.98truncation ) and cardiac troponin T (TNNT2p.K217deletion ; also known as the p.K210del) and the non-sarcomeric gene mutation encoding lamin A/C (LMNAp.R331Q ). We assessed sarcomeric protein expression and phosphorylation and contractile behaviour in single membrane-permeabilized cardiomyocytes in human left ventricular heart tissue. Exchange with recombinant troponin complex was used to establish the direct pathogenic effects of the mutations in TNNI3 and TNNT2. The TNNI3p.98trunc and TNNT2p.K217del mutation showed reduced expression of troponin I to 39% and 51%, troponin T to 64% and 53%, and troponin C to 73% and 97% of controls, respectively, and altered stoichiometry between the three cardiac troponin subunits. The TNNI3p.98trunc showed pure haploinsufficiency, increased Ca2+ -sensitivity and impaired length-dependent activation. The TNNT2p.K217del mutation showed a significant increase in passive tension that was not due to changes in titin isoform composition or phosphorylation. Exchange with wild-type troponin complex corrected troponin protein levels to 83% of controls in the TNNI3p.98trunc sample. Moreover, upon exchange all functional deficits in the TNNI3p.98trunc and TNNT2p.K217del samples were normalized to control values confirming the pathogenic effects of the troponin mutations. The LMNAp.R331Q mutation resulted in reduced maximal force development due to disease remodelling. Our study shows that different gene mutations induce DCM via diverse cellular pathways.


Asunto(s)
Cardiomiopatía Dilatada/genética , Lamina Tipo A/genética , Troponina I/genética , Adulto , Conectina/metabolismo , Femenino , Genotipo , Ventrículos Cardíacos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Mutación , Miocitos Cardíacos/metabolismo , Fosforilación , Troponina I/metabolismo , Adulto Joven
14.
Biol Chem ; 395(11): 1341-52, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25205716

RESUMEN

The giant sarcomeric protein titin has multiple important functions in striated muscle cells. Due to its gigantic size, its central position in the sarcomere and its elastic I-band domains, titin is a scaffold protein that is important for sarcomere assembly, and serves as a molecular spring that defines myofilament distensibility. This review focuses on the emerging role of titin in mechanosensing and hypertrophic signaling, and further highlights recent evidence that links titin to sarcomeric protein turnover.


Asunto(s)
Conectina/metabolismo , Sarcómeros/metabolismo , Transducción de Señal , Animales , Conectina/química , Humanos , Mecanotransducción Celular , Chaperonas Moleculares/metabolismo , Conformación Proteica
15.
Clin Res Cardiol ; 113(5): 672-679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37847314

RESUMEN

The sharing and documentation of cardiovascular research data are essential for efficient use and reuse of data, thereby aiding scientific transparency, accelerating the progress of cardiovascular research and healthcare, and contributing to the reproducibility of research results. However, challenges remain. This position paper, written on behalf of and approved by the German Cardiac Society and German Centre for Cardiovascular Research, summarizes our current understanding of the challenges in cardiovascular research data management (RDM). These challenges include lack of time, awareness, incentives, and funding for implementing effective RDM; lack of standardization in RDM processes; a need to better identify meaningful and actionable data among the increasing volume and complexity of data being acquired; and a lack of understanding of the legal aspects of data sharing. While several tools exist to increase the degree to which data are findable, accessible, interoperable, and reusable (FAIR), more work is needed to lower the threshold for effective RDM not just in cardiovascular research but in all biomedical research, with data sharing and reuse being factored in at every stage of the scientific process. A culture of open science with FAIR research data should be fostered through education and training of early-career and established research professionals. Ultimately, FAIR RDM requires permanent, long-term effort at all levels. If outcomes can be shown to be superior and to promote better (and better value) science, modern RDM will make a positive difference to cardiovascular science and practice. The full position paper is available in the supplementary materials.


Asunto(s)
Investigación Biomédica , Sistema Cardiovascular , Humanos , Manejo de Datos , Reproducibilidad de los Resultados , Corazón
17.
Commun Biol ; 6(1): 657, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344639

RESUMEN

Noonan syndrome (NS), the most common among RASopathies, is caused by germline variants in genes encoding components of the RAS-MAPK pathway. Distinct variants, including the recurrent Ser257Leu substitution in RAF1, are associated with severe hypertrophic cardiomyopathy (HCM). Here, we investigated the elusive mechanistic link between NS-associated RAF1S257L and HCM using three-dimensional cardiac bodies and bioartificial cardiac tissues generated from patient-derived induced pluripotent stem cells (iPSCs) harboring the pathogenic RAF1 c.770 C > T missense change. We characterize the molecular, structural, and functional consequences of aberrant RAF1-associated signaling on the cardiac models. Ultrastructural assessment of the sarcomere revealed a shortening of the I-bands along the Z disc area in both iPSC-derived RAF1S257L cardiomyocytes and myocardial tissue biopsies. The aforementioned changes correlated with the isoform shift of titin from a longer (N2BA) to a shorter isoform (N2B) that also affected the active force generation and contractile tensions. The genotype-phenotype correlation was confirmed using cardiomyocyte progeny of an isogenic gene-corrected RAF1S257L-iPSC line and was mainly reversed by MEK inhibition. Collectively, our findings uncovered a direct link between a RASopathy gene variant and the abnormal sarcomere structure resulting in a cardiac dysfunction that remarkably recapitulates the human disease.


Asunto(s)
Cardiomiopatía Hipertrófica , Síndrome de Noonan , Proteínas Proto-Oncogénicas c-raf , Humanos , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/patología , Mutación de Línea Germinal , Miocitos Cardíacos/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/complicaciones , Síndrome de Noonan/metabolismo , Transducción de Señal , Proteínas Proto-Oncogénicas c-raf/genética
18.
J Biol Chem ; 286(12): 9905-12, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21257761

RESUMEN

Titin, the largest protein in the human body, is well known as a molecular spring in muscle cells and scaffold protein aiding myofibrillar assembly. However, recent evidence has established another important role for titin: that of a regulatory node integrating, and perhaps coordinating, diverse signaling pathways, particularly in cardiomyocytes. We review key findings within this emerging field, including those related to phosphorylation of the titin springs, and also discuss how titin participates in hypertrophic gene regulation and protein quality control.


Asunto(s)
Cardiomegalia/metabolismo , Regulación de la Expresión Génica , Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Conectina , Humanos , Proteínas Musculares/genética , Miocitos Cardíacos/patología , Miofibrillas/genética , Fosforilación/genética , Proteínas Quinasas/genética
19.
Circulation ; 124(25): 2882-91, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22144574

RESUMEN

BACKGROUND: In vitro studies suggest that phosphorylation of titin reduces myocyte/myofiber stiffness. Titin can be phosphorylated by cGMP-activated protein kinase. Intracellular cGMP production is stimulated by B-type natriuretic peptide (BNP) and degraded by phosphodiesterases, including phosphodiesterase-5A. We hypothesized that a phosphodiesterase-5A inhibitor (sildenafil) alone or in combination with BNP would increase left ventricular diastolic distensibility by phosphorylating titin. METHODS AND RESULTS: Eight elderly dogs with experimental hypertension and 4 young normal dogs underwent measurement of the end-diastolic pressure-volume relationship during caval occlusion at baseline, after sildenafil, and BNP infusion. To assess diastolic distensibility independently of load/extrinsic forces, the end-diastolic volume at a common end-diastolic pressure on the sequential end-diastolic pressure-volume relationships was measured (left ventricular capacitance). In a separate group of dogs (n=7 old hypertensive and 7 young normal), serial full-thickness left ventricular biopsies were harvested from the beating heart during identical infusions to measure myofilament protein phosphorylation. Plasma cGMP increased with sildenafil and further with BNP (7.31±2.37 to 26.9±10.3 to 70.3±8.1 pmol/mL; P<0.001). Left ventricular diastolic capacitance increased with sildenafil and further with BNP (51.4±16.9 to 53.7±16.8 to 60.0±19.4 mL; P<0.001). Changes were similar in old hypertensive and young normal dogs. There were no effects on phosphorylation of troponin I, troponin T, phospholamban, or myosin light chain-1 or -2. Titin phosphorylation increased with sildenafil and BNP, whereas titin-based cardiomyocyte stiffness decreased. CONCLUSION: Short-term cGMP-enhancing treatment with sildenafil and BNP improves left ventricular diastolic distensibility in vivo, in part by phosphorylating titin.


Asunto(s)
Diástole/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Proteínas Musculares/metabolismo , Péptido Natriurético Encefálico/farmacología , Piperazinas/farmacología , Proteínas Quinasas/metabolismo , Sulfonas/farmacología , Factores de Edad , Envejecimiento/fisiología , Animales , Biopsia , Adaptabilidad/efectos de los fármacos , Conectina , GMP Cíclico/metabolismo , Diástole/fisiología , Perros , Hipertensión/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Fosforilación/efectos de los fármacos , Purinas/farmacología , Sarcómeros/metabolismo , Citrato de Sildenafil , Vasodilatadores/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Función Ventricular Izquierda/fisiología , Presión Ventricular/efectos de los fármacos , Presión Ventricular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA