Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
RNA Biol ; 20(1): 48-58, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36727270

RESUMEN

Automated genome annotation is essential for extracting biological information from sequence data. The identification and annotation of tRNA genes is frequently performed by the software package tRNAscan-SE, the output of which is listed for selected genomes in the Genomic tRNA database (GtRNAdb). Here, we highlight a pervasive error in prokaryotic tRNA gene sets on GtRNAdb: the mis-categorization of partial, non-canonical tRNA genes as standard, canonical tRNA genes. Firstly, we demonstrate the issue using the tRNA gene sets of 20 organisms from the archaeal taxon Thermococcaceae. According to GtRNAdb, these organisms collectively deviate from the expected set of tRNA genes in 15 instances, including the listing of eleven putative canonical tRNA genes. However, after detailed manual annotation, only one of these eleven remains; the others are either partial, non-canonical tRNA genes resulting from the integration of genetic elements or CRISPR-Cas activity (seven instances), or attributable to ambiguities in input sequences (three instances). Secondly, we show that similar examples of the mis-categorization of predicted tRNA sequences occur throughout the prokaryotic sections of GtRNAdb. While both canonical and non-canonical prokaryotic tRNA gene sequences identified by tRNAscan-SE are biologically interesting, the challenge of reliably distinguishing between them remains. We recommend employing a combination of (i) screening input sequences for the genetic elements typically associated with non-canonical tRNA genes, and ambiguities, (ii) activating the tRNAscan-SE automated pseudogene detection function, and (iii) scrutinizing predicted tRNA genes with low isotype scores. These measures greatly reduce manual annotation efforts, and lead to improved prokaryotic tRNA gene set predictions.


Asunto(s)
Genoma , ARN de Transferencia , ARN de Transferencia/genética
2.
BMC Biol ; 18(1): 57, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32460826

RESUMEN

BACKGROUND: Gene duplication events play an important role in the evolution and adaptation of organisms. Duplicated genes can arise through different mechanisms, including whole-genome duplications (WGDs). Recently, WGD was suggested to be an important driver of evolution, also in hexapod animals. RESULTS: Here, we analyzed 20 high-quality hexapod genomes using whole-paranome distributions of estimated synonymous distances (KS), patterns of within-genome co-linearity, and phylogenomic gene tree-species tree reconciliation methods. We observe an abundance of gene duplicates in the majority of these hexapod genomes, yet we find little evidence for WGD. The majority of gene duplicates seem to have originated through small-scale gene duplication processes. We did detect segmental duplications in six genomes, but these lacked the within-genome co-linearity signature typically associated with WGD, and the age of these duplications did not coincide with particular peaks in KS distributions. Furthermore, statistical gene tree-species tree reconciliation failed to support all but one of the previously hypothesized WGDs. CONCLUSIONS: Our analyses therefore provide very limited evidence for WGD having played a significant role in the evolution of hexapods and suggest that alternative mechanisms drive gene duplication events in this group of animals. For instance, we propose that, along with small-scale gene duplication events, episodes of increased transposable element activity could have been an important source for gene duplicates in hexapods.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genoma , Insectos/genética , Animales , Artrópodos/genética , Filogenia
3.
BMC Evol Biol ; 19(1): 156, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31349784

RESUMEN

BACKGROUND: The evolution of complex organs is thought to occur via a stepwise process, each subsequent step increasing the organ's complexity by a tiny amount. This evolutionary process can be studied by comparing closely related species that vary in the presence or absence of their organs. This is the case for the placenta in the live-bearing fish family Poeciliidae, as members of this family vary markedly in their ability to supply nutrients to their offspring via a placenta. Here, we investigate the genomic basis underlying this phenotypic variation in Heterandria formosa, a poeciliid fish with a highly complex placenta. We compare this genome to three published reference genomes of non-placental poeciliid fish to gain insight in which genes may have played a role in the evolution of the placenta in the Poeciliidae. RESULTS: We sequenced the genome of H. formosa, providing the first whole genome sequence for a placental poeciliid. We looked for signatures of adaptive evolution by comparing its gene sequences to those of three non-placental live-bearing relatives. Using comparative evolutionary analyses, we found 17 genes that were positively selected exclusively in H. formosa, as well as five gene duplications exclusive to H. formosa. Eight of the genes evolving under positive selection in H. formosa have a placental function in mammals, most notably endometrial tissue remodelling or endometrial cell proliferation. CONCLUSIONS: Our results show that a substantial portion of positively selected genes have a function that correlates well with the morphological changes that form the placenta of H. formosa, compared to the corresponding tissue in non-placental poeciliids. These functions are mainly endometrial tissue remodelling and endometrial cell proliferation. Therefore, we hypothesize that natural selection acting on genes involved in these functions plays a key role in the evolution of the placenta in H. formosa.


Asunto(s)
Evolución Biológica , Secuencia Conservada , Ciprinodontiformes/genética , Genoma , Placenta/fisiología , Animales , Femenino , Duplicación de Gen , Embarazo , Selección Genética , Secuenciación Completa del Genoma
4.
BMC Genomics ; 20(1): 309, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31014246

RESUMEN

BACKGROUND: Trait loss is a pervasive phenomenon in evolution, yet the underlying molecular causes have been identified in only a handful of cases. Most of these cases involve loss-of-function mutations in one or more trait-specific genes. However, in parasitoid insects the evolutionary loss of a metabolic trait is not associated with gene decay. Parasitoids have lost the ability to convert dietary sugars into fatty acids. Earlier research suggests that lack of lipogenesis in the parasitoid wasp Nasonia vitripennis is caused by changes in gene regulation. RESULTS: We compared transcriptomic responses to sugar-feeding in the non-lipogenic parasitoid species Nasonia vitripennis and the lipogenic Drosophila melanogaster. Both species adjusted their metabolism within 4 hours after sugar-feeding, but there were sharp differences between the expression profiles of the two species, especially in the carbohydrate and lipid metabolic pathways. Several genes coding for key enzymes in acetyl-CoA metabolism, such as malonyl-CoA decarboxylase (mcd) and HMG-CoA synthase (hmgs) differed in expression between the two species. Their combined action likely blocks lipogenesis in the parasitoid species. Network-based analysis showed connectivity of genes to be negatively correlated to the fold change of gene expression. Furthermore, genes involved in the fatty acid metabolic pathway were more connected than the set of genes of all metabolic pathways combined. CONCLUSION: High connectivity of lipogenesis genes is indicative of pleiotropic effects and could explain the absence of gene degradation. We conclude that modification of expression levels of only a few little-connected genes, such as mcd, is sufficient to enable complete loss of lipogenesis in N. vitripennis.


Asunto(s)
Evolución Molecular , Lipogénesis/genética , Avispas/genética , Avispas/metabolismo , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Pleiotropía Genética , Transcripción Genética , Avispas/fisiología
5.
Am Nat ; 194(3): 422-431, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31553212

RESUMEN

The use of DNA demethylating agents has been popular in epigenetic studies. Recently, Cook and colleagues, in a 2015 American Naturalist article, claimed an effect of 5-aza-2'-deoxycytidine (5-aza-dC) on the sex ratio of a parasitoid wasp without verifying its effect on DNA methylation. We repeated the 5-aza-dC feeding treatment to test its effectiveness. We used bisulfite amplicon sequencing of 10 genes that either were heavily methylated, previously showed a response to 5-aza-dC, or were suggested to regulate fatty acid synthesis epigenetically, and we demonstrate that wasps fed 5-aza-dC did not show reduced DNA methylation at these loci. Therefore, the conclusion that demethylation shifts sex ratios upward needs reconsideration.


Asunto(s)
Metilación de ADN , Avispas , Animales , Azacitidina , Decitabina , Razón de Masculinidad
6.
BMC Genomics ; 19(1): 892, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30526508

RESUMEN

BACKGROUND: Selection acts on the phenotype, yet only the genotype is inherited. While both the phenotypic and genotypic response to short-term selection can be measured, the link between these is a major unsolved problem in evolutionary biology, in particular for complex behavioural phenotypes. RESULTS: Here we characterize the genomic and the transcriptomic basis of associative learning ability in the parasitic wasp Nasonia vitripennis and use gene network analysis to link the two. We artificially selected for improved associative learning ability in four independent pairs of lines and identified signatures of selection across the genome. Allele frequency diverged consistently between the selected and control lines in 118 single nucleotide polymorphisms (SNPs), clustering in 51 distinct genomic regions containing 128 genes. The majority of SNPs were found in regulatory regions, suggesting a potential role for gene expression evolution. We therefore sequenced the transcriptomes of selected and control lines and identified 36 consistently differentially expressed transcripts with large changes in expression. None of the differentially expressed genes also showed sequence divergence as a result of selection. Instead, gene network analysis showed many of the genes with consistent allele frequency differences and all of the differentially expressed genes to cluster in a single co-expression network. At a functional level, both genomic and transcriptomic analyses implicated members of gene networks known to be involved in neural plasticity and cognitive processes. CONCLUSIONS: Taken together, our results reveal how specific cognitive abilities can readily respond to selection via a complex interplay between regulatory and sequence evolution.


Asunto(s)
Evolución Molecular , Aprendizaje , Secuencias Reguladoras de Ácidos Nucleicos/genética , Selección Genética , Avispas/genética , Alelos , Animales , Secuencia de Bases , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Variación Genética , Genoma de los Insectos , Sistemas de Lectura Abierta/genética , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN
7.
BMC Genomics ; 18(1): 331, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28449654

RESUMEN

BACKGROUND: Parasitoid resistance in Drosophila varies considerably, among and within species. An immune response, lamellocyte-mediated encapsulation, evolved in a subclade of Drosophila and was subsequently lost in at least one species within this subclade. While the mechanisms of resistance are fairly well documented in D. melanogaster, much less is known for closely related species. Here, we studied the inter- and intra-species variation in gene expression after parasitoid attack in Drosophila. We used RNA-seq after parasitization of four closely related Drosophila species of the melanogaster subgroup and replicated lines of D. melanogaster experimentally selected for increased resistance to gain insights into short- and long-term evolutionary changes. RESULTS: We found a core set of genes that are consistently up-regulated after parasitoid attack in the species and lines tested, regardless of their level of resistance. Another set of genes showed no up-regulation or expression in D. sechellia, the species unable to raise an immune response against parasitoids. This set consists largely of genes that are lineage-restricted to the melanogaster subgroup. Artificially selected lines did not show significant differences in gene expression with respect to non-selected lines in their responses to parasitoid attack, but several genes showed differential exon usage. CONCLUSIONS: We showed substantial similarities, but also notable differences, in the transcriptional responses to parasitoid attack among four closely related Drosophila species. In contrast, within D. melanogaster, the responses were remarkably similar. We confirmed that in the short-term, selection does not act on a pre-activation of the immune response. Instead it may target alternative mechanisms such as differential exon usage. In the long-term, we found support for the hypothesis that the ability to immunologically resist parasitoid attack is contingent on new genes that are restricted to the melanogaster subgroup.


Asunto(s)
Drosophila/genética , Drosophila/parasitología , Perfilación de la Expresión Génica , Genómica , Interacciones Huésped-Parásitos , Avispas/fisiología , Animales , Evolución Molecular , Genes de Insecto/genética , Anotación de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
8.
BMC Genomics ; 18(1): 493, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28659179

RESUMEN

BACKGROUND: Folsomia candida is a model in soil biology, belonging to the family of Isotomidae, subclass Collembola. It reproduces parthenogenetically in the presence of Wolbachia, and exhibits remarkable physiological adaptations to stress. To better understand these features and adaptations to life in the soil, we studied its genome in the context of its parthenogenetic lifestyle. RESULTS: We applied Pacific Bioscience sequencing and assembly to generate a reference genome for F. candida of 221.7 Mbp, comprising only 162 scaffolds. The complete genome of its endosymbiont Wolbachia, was also assembled and turned out to be the largest strain identified so far. Substantial gene family expansions and lineage-specific gene clusters were linked to stress response. A large number of genes (809) were acquired by horizontal gene transfer. A substantial fraction of these genes are involved in lignocellulose degradation. Also, the presence of genes involved in antibiotic biosynthesis was confirmed. Intra-genomic rearrangements of collinear gene clusters were observed, of which 11 were organized as palindromes. The Hox gene cluster of F. candida showed major rearrangements compared to arthropod consensus cluster, resulting in a disorganized cluster. CONCLUSIONS: The expansion of stress response gene families suggests that stress defense was important to facilitate colonization of soils. The large number of HGT genes related to lignocellulose degradation could be beneficial to unlock carbohydrate sources in soil, especially those contained in decaying plant and fungal organic matter. Intra- as well as inter-scaffold duplications of gene clusters may be a consequence of its parthenogenetic lifestyle. This high quality genome will be instrumental for evolutionary biologists investigating deep phylogenetic lineages among arthropods and will provide the basis for a more mechanistic understanding in soil ecology and ecotoxicology.


Asunto(s)
Artrópodos/genética , Artrópodos/fisiología , Genómica , Suelo , Animales , Antibacterianos/biosíntesis , Artrópodos/metabolismo , Reordenamiento Génico , Transferencia de Gen Horizontal , Familia de Multigenes/genética , Filogenia
9.
Mol Biol Evol ; 33(3): 697-706, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26560353

RESUMEN

Transposable elements (TEs) and other repetitive DNA can accumulate in the absence of recombination, a process contributing to the degeneration of Y-chromosomes and other nonrecombining genome portions. A similar accumulation of repetitive DNA is expected for asexually reproducing species, given their entire genome is effectively nonrecombining. We tested this expectation by comparing the whole-genome TE loads of five asexual arthropod lineages and their sexual relatives, including asexual and sexual lineages of crustaceans (Daphnia water fleas), insects (Leptopilina wasps), and mites (Oribatida). Surprisingly, there was no evidence for increased TE load in genomes of asexual as compared to sexual lineages, neither for all classes of repetitive elements combined nor for specific TE families. Our study therefore suggests that nonrecombining genomes do not accumulate TEs like nonrecombining genomic regions of sexual lineages. Even if a slight but undetected increase of TEs were caused by asexual reproduction, it appears to be negligible compared to variance between species caused by processes unrelated to reproductive mode. It remains to be determined if molecular mechanisms underlying genome regulation in asexuals hamper TE activity. Alternatively, the differences in TE dynamics between nonrecombining genomes in asexual lineages versus nonrecombining genome portions in sexual species might stem from selection for benign TEs in asexual lineages because of the lack of genetic conflict between TEs and their hosts and/or because asexual lineages may only arise from sexual ancestors with particularly low TE loads.


Asunto(s)
Artrópodos/genética , Elementos Transponibles de ADN , Evolución Molecular , Reproducción Asexuada/genética , Animales , Genoma , Genómica
10.
Mol Ecol ; 26(19): 5043-5057, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28746736

RESUMEN

Chemical warfare including insecticidal secondary metabolites is a well-known strategy for environmental microbes to monopolize a food source. Insects in turn have evolved behavioural and physiological defences to eradicate or neutralize the harmful microorganisms. We studied the defensive repertoire of insects in this interference competition by combining behavioural and developmental assays with whole-transcriptome time-series analysis. Confrontation with the toxic filamentous fungus Aspergillus nidulans severely reduced the survival of Drosophila melanogaster larvae. Nonetheless, the larvae did not behaviourally avoid the fungus, but aggregated at it. Confrontation with fungi strongly affected larval gene expression, including many genes involved in detoxification (e.g., CYP, GST and UGT genes) and the formation of the insect cuticle (e.g., Tweedle genes). The most strongly upregulated genes were several members of the insect-specific gene family Osiris, and CHK-kinase-like domains were over-represented. Immune responses were not activated, reflecting the competitive rather than pathogenic nature of the antagonistic interaction. While internal microbes are widely acknowledged as important, our study emphasizes the underappreciated role of environmental microbes as fierce competitors.


Asunto(s)
Drosophila melanogaster/genética , Interacciones Huésped-Patógeno/genética , Animales , Aspergillus nidulans , Drosophila melanogaster/microbiología , Genes de Insecto , Larva/genética , Larva/microbiología , Transcriptoma
11.
BMC Genomics ; 15: 808, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25245033

RESUMEN

BACKGROUND: There is growing interest in odonates (damselflies and dragonflies) as model organisms in ecology and evolutionary biology but the development of genomic resources has been slow. So far only one draft genome (Ladona fulva) and one transcriptome assembly (Enallagma hageni) have been published. Odonates have some of the most advanced visual systems among insects and several species are colour polymorphic, and genomic and transcriptomic data would allow studying the genomic architecture of these interesting traits and make detailed comparative studies between related species possible. Here, we present a comprehensive de novo transcriptome assembly for the blue-tailed damselfly Ischnura elegans (Odonata: Coenagrionidae) built from short-read RNA-seq data. The transcriptome analysis in this paper provides a first step towards identifying genes and pathways underlying the visual and colour systems in this insect group. RESULTS: Illumina RNA sequencing performed on tissues from the head, thorax and abdomen generated 428,744,100 paired-ends reads amounting to 110 Gb of sequence data, which was assembled de novo with Trinity. A transcriptome was produced after filtering and quality checking yielding a final set of 60,232 high quality transcripts for analysis. CEGMA software identified 247 out of 248 ultra-conserved core proteins as 'complete' in the transcriptome assembly, yielding a completeness of 99.6%. BLASTX and InterProScan annotated 55% of the assembled transcripts and showed that the three tissue types differed both qualitatively and quantitatively in I. elegans. Differential expression identified 8,625 transcripts to be differentially expressed in head, thorax and abdomen. Targeted analyses of vision and colour functional pathways identified the presence of four different opsin types and three pigmentation pathways. We also identified transcripts involved in temperature sensitivity, thermoregulation and olfaction. All these traits and their associated transcripts are of considerable ecological and evolutionary interest for this and other insect orders. CONCLUSIONS: Our work presents a comprehensive transcriptome resource for the ancient insect order Odonata and provides insight into their biology and physiology. The transcriptomic resource can provide a foundation for future investigations into this diverse group, including the evolution of colour, vision, olfaction and thermal adaptation.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Proteínas de Insectos/genética , Odonata/fisiología , Análisis de Secuencia de ARN/métodos , Abdomen/fisiología , Regulación de la Temperatura Corporal , Femenino , Regulación de la Expresión Génica , Cabeza/fisiología , Humanos , Melaninas/genética , Odonata/anatomía & histología , Odonata/clasificación , Odonata/genética , Opsinas/genética , Sitios de Carácter Cuantitativo , Olfato , Programas Informáticos , Tórax/metabolismo , Visión Ocular
12.
BMC Genomics ; 15: 914, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25331649

RESUMEN

BACKGROUND: Aerobic methanotrophs can grow in hostile volcanic environments and use methane as their sole source of energy. The discovery of three verrucomicrobial Methylacidiphilum strains has revealed diverse metabolic pathways used by these methanotrophs, including mechanisms through which methane is oxidized. The basis of a complete understanding of these processes and of how these bacteria evolved and are able to thrive in such extreme environments partially resides in the complete characterization of their genome and its architecture. RESULTS: In this study, we present the complete genome sequence of Methylacidiphilum fumariolicum SolV, obtained using Pacific Biosciences single-molecule real-time (SMRT) sequencing technology. The genome assembles to a single 2.5 Mbp chromosome with an average GC content of 41.5%. The genome contains 2,741 annotated genes and 314 functional subsystems including all key metabolic pathways that are associated with Methylacidiphilum strains, including the CBB pathway for CO2 fixation. However, it does not encode the serine cycle and ribulose monophosphate pathways for carbon fixation. Phylogenetic analysis of the particulate methane mono-oxygenase operon separates the Methylacidiphilum strains from other verrucomicrobial methanotrophs. RNA-Seq analysis of cell cultures growing in three different conditions revealed the deregulation of two out of three pmoCAB operons. In addition, genes involved in nitrogen fixation were upregulated in cell cultures growing in nitrogen fixing conditions, indicating the presence of active nitrogenase. Characterization of the global methylation state of M. fumariolicum SolV revealed methylation of adenines and cytosines mainly in the coding regions of the genome. Methylation of adenines was predominantly associated with 5'-m6ACN4GT-3' and 5'-CCm6AN5CTC-3' methyltransferase recognition motifs whereas methylated cytosines were not associated with any specific motif. CONCLUSIONS: Our findings provide novel insights into the global methylation state of verrucomicrobial methanotroph M. fumariolicum SolV. However, partial conservation of methyltransferases between M. fumariolicum SolV and M. infernorum V4 indicates potential differences in the global methylation state of Methylacidiphilum strains. Unravelling the M. fumariolicum SolV genome and its epigenetic regulation allow for robust characterization of biological processes that are involved in oxidizing methane. In turn, they offer a better understanding of the evolution, the underlying physiological and ecological properties of SolV and other Methylacidiphilum strains.


Asunto(s)
Genómica , Verrucomicrobia/genética , Epigénesis Genética/genética , Genoma Bacteriano/genética , Anotación de Secuencia Molecular , Motivos de Nucleótidos/genética , Filogenia
13.
BMC Genom Data ; 25(1): 27, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443836

RESUMEN

OBJECTIVES: The black rhinoceros (Diceros bicornis) is an endangered mammal for which a captive breeding program is part of the conservation effort. Black rhinos in zoo's often suffer from chronic infections and heamochromatosis. Furthermore, breeding is hampered by low male fertility. To aid a research project studying these topics, we sequenced and assembled the genome of a captive male black rhino using ONT sequencing data only. DATA DESCRIPTION: This work produced over 100 Gb whole genome sequencing reads from whole blood. These were assembled into a 2.47 Gb draft genome consisting of 834 contigs with an N50 of 29.53 Mb. The genome annotation was lifted over from an available genome annotation for black rhino, which resulted in the retrieval of over 99% of gene features. This new genome assembly will be a valuable resource in for conservation genetic research in this species.


Asunto(s)
Investigación Genética , Nariz , Masculino , Animales , Perisodáctilos/genética , Infección Persistente , Proyectos de Investigación
14.
Mol Ecol ; 22(17): 4433-44, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23879258

RESUMEN

Wolbachia are endosymbiotic bacteria known to manipulate the reproduction of their hosts. These manipulations are expected to have consequences on the population genetics of the host, such as heterozygosity levels, genetic diversity and gene flow. The parasitoid wasp Tetrastichus coeruleus has populations that are infected with parthenogenesis-inducing Wolbachia and populations that are not infected. We studied the population genetics of T. coeruleus between and within Wolbachia-infected and uninfected populations, using nuclear microsatellites and mitochondrial DNA. We expected reduced genetic diversity in both DNA types in infected populations. However, migration and gene flow could introduce new DNA variants into populations. We therefore paid special attention to individuals with unexpected (genetic) characteristics. Based on nuclear and mitochondrial DNA, two genetic clusters were evident: a thelytokous cluster containing all Wolbachia-infected, parthenogenetic populations and an arrhenotokous cluster containing all uninfected, sexual populations. Nuclear and mitochondrial DNA did not exhibit concordant patterns of variation, although there was reduced genetic diversity in infected populations for both DNA types. Within the thelytokous cluster, there was nuclear DNA variation, but no mitochondrial DNA variation. This nuclear DNA variation may be explained by occasional sex between infected females and males, by horizontal transmission of Wolbachia, and/or by novel mutations. Several females from thelytokous populations were uninfected and/or heterozygous for microsatellite loci. These unexpected characteristics may be explained by migration, by inefficient transmission of Wolbachia, by horizontal transmission of Wolbachia, and/or by novel mutations. However, migration has not prevented the build-up of considerable genetic differentiation between thelytokous and arrhenotokous populations.


Asunto(s)
Variación Genética , Genética de Población , Avispas/genética , Avispas/microbiología , Wolbachia/fisiología , Animales , Bélgica , Núcleo Celular/genética , Análisis por Conglomerados , ADN Mitocondrial/genética , Femenino , Genes de Insecto , Haplotipos , Masculino , Repeticiones de Microsatélite , Modelos Genéticos , Datos de Secuencia Molecular , Países Bajos , Partenogénesis , Simbiosis
15.
Evol Appl ; 16(1): 3-21, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36699126

RESUMEN

Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes. Similarly, the exact aspect of the evolved population that we want to predict may also differ. For example, we could try to predict which genotype will dominate, the fitness of the population or the extinction probability of a population. In addition, there are many uses of evolutionary predictions that may not always be recognized as such. The main goal of this review is to increase awareness of methods and data in different research fields by showing the breadth of situations in which evolutionary predictions are made. We describe how diverse evolutionary predictions share a common structure described by the predictive scope, time scale and precision. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation in biotechnology, we discuss the methods for predicting evolution, the factors that affect predictability and how predictions can be used to prevent evolution in undesirable directions or to promote beneficial evolution (i.e. evolutionary control). We hope that this review will stimulate collaboration between fields by establishing a common language for evolutionary predictions.

16.
Mol Ecol ; 21(16): 3898-906, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22548357

RESUMEN

The widespread occurrence of sex is one of the most elusive problems in evolutionary biology. Theory predicts that asexual lineages can be driven to extinction by uncontrolled proliferation of vertically transmitted transposable elements (TEs), which accumulate because of the inefficiency of purifying selection in the absence of sex and recombination. To test this prediction, we compared genome-wide TE load between a sexual lineage of the parasitoid wasp Leptopilina clavipes and a lineage of the same species that is rendered asexual by Wolbachia-induced parthenogenesis. We obtained draft genome sequences at 15-20× coverage of both the sexual and the asexual lineages using next-generation sequencing. We identified transposons of most major classes in both lineages. Quantification of TE abundance using coverage depth showed that copy numbers in the asexual lineage exceeded those in the sexual lineage for DNA transposons, but not LTR and LINE-like elements. However, one or a small number of gypsy-like LTR elements exhibited a fourfold higher coverage in the asexual lineage. Quantitative PCR showed that high loads of this gypsy-like TE were characteristic for 11 genetically distinct asexual wasp lineages when compared to sexual lineages. We found no evidence for an overall increase in copy number for all TE types in asexuals as predicted by theory. Instead, we suggest that the expansions of specific TEs are best explained as side effects of (epi)genetic manipulations of the host genome by Wolbachia. Asexuality is achieved in a myriad of ways in nature, many of which could similarly result in TE proliferation.


Asunto(s)
Reproducción Asexuada/genética , Avispas/fisiología , Wolbachia/fisiología , Animales , Evolución Biológica , Metilación de ADN , Elementos Transponibles de ADN , Femenino , Genoma de los Insectos , Elementos de Nucleótido Esparcido Largo , Datos de Secuencia Molecular , Partenogénesis/genética , Secuencias Repetidas Terminales , Avispas/microbiología
17.
Mol Ecol ; 20(17): 3644-52, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21668807

RESUMEN

Wolbachia are endocellular bacteria known for manipulating the reproductive systems of many of their invertebrate hosts. Wolbachia are transmitted vertically from mother to offspring. In addition, new infections result from horizontal transmission between different host species. However, to what extent horizontal transmission plays a role in the spread of a new infection through the host population is unknown. Here, we investigate whether horizontal transmission of Wolbachia can explain clonal genetic variation in natural populations of Leptopilina clavipes, a parasitoid wasp infected with a parthenogenesis-inducing Wolbachia. We assessed variance of markers on the nuclear, mitochondrial and Wolbachia genomes. The nuclear and mitochondrial markers displayed significant and congruent variation among thelytokous wasp lineages, showing that multiple lineages have become infected with Wolbachia. The alternative hypothesis in which a single female became infected, the daughters of which mated with males (thus introducing nuclear genetic variance) cannot account for the presence of concordant variance in mtDNA. All Wolbachia markers, including the hypervariable wsp gene, were invariant, suggesting that only a single strain of Wolbachia is involved. These results show that Wolbachia has transferred horizontally to infect multiple female lineages during the early spread through L. clavipes. Remarkably, multiple thelytokous lineages have persisted side by side in the field for tens of thousands of generations.


Asunto(s)
Genes Bacterianos , Interacciones Huésped-Patógeno , Avispas/genética , Wolbachia/genética , Wolbachia/patogenicidad , Animales , ADN Mitocondrial/genética , Transmisión de Enfermedad Infecciosa , Femenino , Variación Genética , Haplotipos , Masculino , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus/métodos , Partenogénesis/genética , Filogeografía , Análisis de Secuencia de ADN , Factores Sexuales , Avispas/microbiología
18.
Naturwissenschaften ; 98(3): 175-80, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21221516

RESUMEN

Wolbachia is a maternally inherited bacterium that manipulates the reproduction of its host. Recent studies have shown that male-killing strains can induce cytoplasmic incompatibility (CI) when introgressed into a resistant host. Phylogenetic studies suggest that transitions between CI and other Wolbachia phenotypes have also occurred frequently, raising the possibility that latent CI may be widespread among Wolbachia. Here, we investigate whether a parthenogenesis-inducing Wolbachia strain can also induce CI. Parthenogenetic females of the parasitoid wasp Asobara japonica regularly produce a small number of males that may be either infected or not. Uninfected males were further obtained through removal of the Wolbachia using antibiotics and from a naturally uninfected strain. Uninfected females that had mated with infected males produced a slightly, but significantly more male-biased sex ratio than uninfected females that had mated with uninfected males. This effect was strongest in females that mated with males that had a relatively high Wolbachia titer. Quantitative PCR indicated that infected males did not show higher ratios of nuclear versus mitochondrial DNA content. Wolbachia therefore does not cause diploidization of cells in infected males. While these results are consistent with CI, other alternatives such as production of abnormal sperm by infected males cannot be completely ruled out. Overall, the effect was very small (9%), suggesting that if CI is involved it may have degenerated through the accumulation of mutations.


Asunto(s)
Citoplasma/fisiología , Avispas/microbiología , Wolbachia/fisiología , Animales , Cruzamiento , Femenino , Genes Bacterianos/genética , Masculino , Datos de Secuencia Molecular , Razón de Masculinidad , Wolbachia/genética
19.
BMC Ecol ; 11: 4, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21272293

RESUMEN

BACKGROUND: The genetic structure of populations can be influenced by geographic isolation (including physical distance) and ecology. We examined these effects in Leptopilina boulardi, a parasitoid of Drosophila of African origin and widely distributed over temperate and (sub) tropical climates. RESULTS: We sampled 11 populations of L. boulardi from five climatic zones in Iran and measured genetic differentiation at nuclear (Amplified Fragment Length Polymorphism; AFLP) and mitochondrial (Cytochrome Oxidase I; COI) loci. An Analysis of Molecular Variance (AMOVA) for the AFLP data revealed that 67.45% of variation resided between populations. No significant variation was observed between climatic zones. However, a significant difference was detected between populations from the central (dry) regions and those from the wetter north, which are separated by desert. A similarly clear cut genetic differentiation between populations from the central part of Iran and those from the north was observed by UPGMA cluster analysis and Principal Coordinates Analysis (PCO). Both UPGMA and PCO further separated two populations from the very humid western Caspian Sea coast (zone 3) from other northern populations from the temperate Caspian Sea coastal plain (zone 2), which are connected by forest. One population (Nour) was genetically intermediate between these two zones, indicating some gene flow between these two groups of populations. In all analyses a mountain population, Sorkhabad was found to be genetically identical to those from the nearby coastal plain (zone 2), which indicates high gene flow between these populations over a short geographical distance. One population from the Caspian coast (Astaneh) was genetically highly diverged from all other populations. A partial Mantel test showed a highly significant positive correlation between genetic and geographic distances, as well as separation by the deserts of central Iran. The COI sequences were highly conserved among all populations. CONCLUSION: The Iranian populations of L. boulardi showed clear genetic structure in AFLP profiles, but not in COI sequence data. The transfer of fruits containing Drosophila larvae parasitized by L. boulardi appears to have caused some unexpected gene flow and changed the genetic composition of populations, particularly in urban areas. Nevertheless, our results suggest that climate, geographic distance and physical barriers may all have contributed to the formation of genetically distinct populations of L. boulardi. Inevitably, there will be overlap between the portions of variance explained by these variables. Disentangling the relative contributions of climate and geography to the genetic structure of this species will require additional sampling.


Asunto(s)
Avispas/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Animales , Clima , Drosophila/parasitología , Complejo IV de Transporte de Electrones/genética , Flujo Génico , Variación Genética , Proteínas de Insectos/genética , Irán , Melaza , Datos de Secuencia Molecular , Filogenia , Avispas/clasificación , Avispas/enzimología , Avispas/fisiología
20.
Mol Ecol ; 19(8): 1733-44, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20345674

RESUMEN

Whereas sexual reproduction may facilitate adaptation to complex environments with many biotic interactions, simplified environments are expected to favour asexual reproduction. In agreement with this, recent studies on invertebrates have shown a prevalence of asexual species in agricultural (simplified) but not in natural (complex) environments. We investigated whether the same correlation between reproductive mode and habitat can be found in different populations within one species. The parasitoid wasp Tetrastichus coeruleus forms an ideal model to test this question, since it occurs both in natural and agricultural environments. Further, we investigated whether Wolbachia infection caused parthenogenesis in female-biased populations. In contrast to the general pattern, in Dutch and French natural areas, we found Wolbachia-infected, highly female-biased populations that reproduce parthenogenetically. In contrast, populations on Dutch agricultural fields were not infected with Wolbachia, showed higher frequencies of males and reproduced sexually. However, we also found a female-only, Wolbachia-infected population on agricultural fields in north-eastern United States. All Wolbachia-infected populations were infected with the same Wolbachia strain. At this moment, we do not have a convincing explanation for this deviation from the general pattern of ecology and reproductive mode. It may be that asparagus agricultural fields differ from other crop fields in ways that favour sexual reproduction. Alternatively, Wolbachia may manipulate life history traits in its host, resulting in different fitness pay-offs in different habitats. The fixation of Wolbachia in the United States populations (where the species was introduced) may be due to founder effect and lack of uninfected, sexual source populations.


Asunto(s)
Partenogénesis , Avispas/microbiología , Avispas/fisiología , Wolbachia/genética , Animales , ADN Bacteriano/genética , Ecosistema , Femenino , Francia , Masculino , Países Bajos , Análisis de Secuencia de ADN , Razón de Masculinidad , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA