Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1041-1056, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29885363

RESUMEN

The hepatitis C virus (HCV) life cycle is tightly linked to the host cell lipid metabolism with the endoplasmic reticulum-derived membranous web harboring viral RNA replication complexes and lipid droplets as virion assembly sites. To investigate HCV-induced changes in the lipid composition, we performed quantitative shotgun lipidomic studies of whole cell extracts and subcellular compartments. Our results indicate that HCV infection reduces the ratio of neutral to membrane lipids. While the amount of neutral lipids and lipid droplet morphology were unchanged, membrane lipids, especially cholesterol and phospholipids, accumulated in the microsomal fraction in HCV-infected cells. In addition, HCV-infected cells had a higher relative abundance of phosphatidylcholines and triglycerides with longer fatty acyl chains and a strikingly increased utilization of C18 fatty acids, most prominently oleic acid (FA [18:1]). Accordingly, depletion of fatty acid elongases and desaturases impaired HCV replication. Moreover, the analysis of free fatty acids revealed increased levels of polyunsaturated fatty acids (PUFAs) caused by HCV infection. Interestingly, inhibition of the PUFA synthesis pathway via knockdown of the rate-limiting Δ6-desaturase enzyme or by treatment with a high dose of a small-molecule inhibitor impaired viral progeny production, indicating that elevated PUFAs are needed for virion morphogenesis. In contrast, pretreatment with low inhibitor concentrations promoted HCV translation and/or early RNA replication. Taken together our results demonstrate the complex remodeling of the host cell lipid metabolism induced by HCV to enhance both virus replication and progeny production.


Asunto(s)
Hepacivirus/metabolismo , Hepatocitos/metabolismo , Interacciones Huésped-Patógeno , Metabolismo de los Lípidos/genética , Metaboloma , Virión/metabolismo , Replicación Viral/fisiología , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Línea Celular Tumoral , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Ácido Graso Desaturasas/antagonistas & inhibidores , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Elongasas de Ácidos Grasos , Ácidos Grasos Insaturados/metabolismo , Regulación de la Expresión Génica , Hepacivirus/crecimiento & desarrollo , Hepatocitos/química , Hepatocitos/virología , Humanos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/virología , Microsomas/metabolismo , Microsomas/virología , Ácido Oléico/metabolismo , Fosfatidilcolinas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/biosíntesis , ARN Viral/genética , Triglicéridos/metabolismo , Virión/crecimiento & desarrollo , Ensamble de Virus/fisiología
2.
J Chromatogr A ; 1611: 460619, 2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31668415

RESUMEN

Iron-free HPLC systems, better known as biocompatible systems, are generally regarded to be chemically more inert compared to conventional HPLC systems. In this work, we studied the chromatographic behavior of some classes of compounds of pharmaceutical interest, analyzed with iron-free systems. Issues typically associated with metal contamination, i.e. strong peak tailing, were observed when using an amide polar-embedded column. Effects of the contamination were visible when anhydrous methanol-acetonitrile was used, indicating that this solvent, albeit generally considered safe for conventional HPLC systems, induce corrosion of iron-free systems. The confirmation of titanium as main acting contaminant came from systematically studying the contribution of each wetted component of the HPLC system on peak shape of affected molecules. Quantification of titanium by ICP-MS analysis of effluents provided further evidence on the source of contamination. A mechanistic description of the complex interaction between titanium ions, organic molecules, and column stationary phase is proposed. In the perspective of developing methods that are fully portable between stainless steel and titanium systems, recommendations are given in terms of potentially sensitive molecules, suitable mobile phase conditions, and type of column to be used.


Asunto(s)
Quelantes/análisis , Cromatografía Líquida de Alta Presión/métodos , Hierro/química , Preparaciones Farmacéuticas/análisis , Titanio/análisis , Compuestos de Anilina/química , Ciprofloxacina/análisis , Sales (Química)/química
3.
Anal Chim Acta ; 1037: 168-176, 2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30292291

RESUMEN

We characterized the performance of a micro-flow LC-ESI-MS2 approach to analyze lipid mediators (LMs) and polyunsaturated fatty acids (PUFA) that was optimized for SPE free lipid extraction. Tandem mass spectrometry was exclusively performed in parallel reaction monitoring (PRM) mode using TOF and Orbitrap analyzers. This acquisition strategy allowed in addition to quantitation by specific quantifier ions to perform spectrum comparisons using full MS2 spectra information of the analyte. Consequently, we developed a dedicated software SpeCS that allows to 1) process raw peak lists, 2) generate customized spectral libraries, 3) test specificity of quantifier ions and 4) perform spectrum comparisons. The dedicated scoring algorithm is based on signal matching and Spearman's rank correlation of intensities of matched signal. The algorithm was evaluated in respect of its specificity to distinguish structural related LMs on both instrument platforms. We show how high resolution mass spectrometry is beneficial to distinguish co-eluted LM isomers and provide a generalized quality control procedure for PRM. The applicability of the approach was evaluated analyzing the lipid mediator response during M. tuberculosis infection in the mouse lung.


Asunto(s)
Ácidos Grasos Insaturados/análisis , Lípidos/análisis , Programas Informáticos , Algoritmos , Cromatografía Liquida , Ácidos Grasos Insaturados/metabolismo , Control de Calidad , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
4.
J Invest Dermatol ; 137(5): 1104-1113, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28108297

RESUMEN

Recruitment of neutrophils and eosinophils into the skin is a hallmark of pemphigoid diseases. The molecular cues regulating granulocyte recruitment into the skin and the individual contributions of neutrophils and eosinophils to pemphigoid diseases are, however, poorly understood. The lipid mediator leukotriene B4 (LTB4) is a potent granulocyte chemoattractant and is abundant in the skin blister fluid of bullous pemphigoid (BP) patients, but its pathogenic significance is unknown. Using mouse models of BP-like epidermolysis bullosa acquisita and of BP, we show that LTB4 and its receptor BLT1 act as critical drivers of neutrophil entry into the skin upon antibody deposition at the dermal-epidermal junction. Mice deficient in 5-lipoxygenase, a key enzyme in LTB4 biosynthesis, or in BLT1 exhibited dramatic resistance to neutrophil recruitment and, consequently, skin inflammation. Accordingly, liquid chromatography-mass spectrometry, used to comprehensively profile lipid mediator generation in the first 48 hours after antibody deposition, showed a pronounced parallel increase in LTB4 and in neutrophils in the skin. Subsequent mechanistic studies in BP-like epidermolysis bullosa acquisita uncovered that neutrophils are necessary for skin inflammation, whereas eosinophils are dispensable, thus identifying neutrophils as major culprits of blister formation. Our results highlight LTB4/BLT1 as absolutely critical drivers of murine pemphigoid disease-like skin inflammation.


Asunto(s)
Epidermólisis Ampollosa Adquirida/patología , Leucotrieno B4/metabolismo , Penfigoide Ampolloso/patología , Receptores de Leucotrieno B4/metabolismo , Piel/patología , Animales , Araquidonato 5-Lipooxigenasa/genética , Cromatografía Liquida/métodos , Modelos Animales de Enfermedad , Eosinófilos/metabolismo , Femenino , Inflamación/patología , Masculino , Espectrometría de Masas/métodos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Neutrófilos/metabolismo
5.
Phytochemistry ; 91: 198-207, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22633844

RESUMEN

The genome of Arabidopsis thaliana encodes 54 functional glutathione transferases (GSTs), classified in seven clades. Although plant GSTs have been implicated in the detoxification of xenobiotics, such as herbicides, extensive redundancy within this large gene family impedes a functional analysis in planta. In this study, a GST-deficient yeast strain was established as a system for analyzing plant GSTs that allows screening for GST substrates and identifying substrate preferences within the plant GST family. To this end, five yeast genes encoding GSTs and GST-related proteins were simultaneously disrupted. The resulting yeast quintuple mutant showed a strongly reduced conjugation of the GST substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl). Consistently, the quintuple mutant was hypersensitive to CDNB, and this phenotype was complemented by the inducible expression of Arabidopsis GSTs. The conjugating activity of the plant GSTs was assessed by in vitro enzymatic assays and via analysis of exposed yeast cells. The formation of glutathione adducts with dinitrobenzene was unequivocally verified by stable isotope labeling and subsequent accurate ultrahigh-resolution mass spectrometry (ICR-FTMS). Analysis of Arabidopsis GSTs encompassing six clades and 42 members demonstrated functional expression in yeast by using CDNB and NBD-Cl as model substrates. Subsequently, the established yeast system was explored for its potential to screen the Arabidopsis GST family for conjugation of the fungicide anilazine. Thirty Arabidopsis GSTs were identified that conferred increased levels of glutathionylated anilazine. Efficient anilazine conjugation was observed in the presence of the phi, tau, and theta clade GSTs including AtGSTF2, AtGSTF4, AtGSTF6, AtGSTF8, AtGSTF10, and AtGSTT2, none of which had previously been known to contribute to fungicide detoxification. ICR-FTMS analysis of yeast extracts allowed the simultaneous detection and semiquantification of anilazine conjugates as well as catabolites.


Asunto(s)
Arabidopsis/enzimología , Glutatión Transferasa/análisis , Saccharomyces cerevisiae/genética , Dinitrobencenos/química , Dinitrobencenos/metabolismo , Glutatión Transferasa/deficiencia , Glutatión Transferasa/metabolismo , Estructura Molecular , Saccharomyces cerevisiae/metabolismo , Triazinas/química , Triazinas/metabolismo
6.
Phytochemistry ; 71(1): 54-61, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19897216

RESUMEN

Xenobiotics are widely used as pesticides. The detoxification of xenobiotics frequently involves conjugation to glutathione prior to compartmentalization and catabolism. In plants, degradation of glutathione-S-conjugates is initiated either by aminoterminal or carboxyterminal amino acid cleavage catalyzed by a gamma-glutamyl transpeptidase and phytochelatin synthase, respectively. In order to establish yeast as a model system for the analysis of the plant pathway, we used monochlorobimane as a model xenobiotic in Saccharomyces cerevisiae and mutants thereof. The catabolism of monochlorobimane is initiated by conjugation to form glutathione-S-bimane, which is then turned over into a gamma-GluCys-bimane conjugate by the vacuolar serine carboxypeptidases CPC and CPY. Alternatively, the glutathione-S-bimane conjugate is catabolized by the action of the gamma-glutamyl transpeptidase Cis2p to a CysGly-conjugate. The turnover of glutathione-S-bimane was impaired in yeast cells deficient in Cis2p and completely abolished by the additional inactivation of CPC and CPY in the corresponding triple knockout. Inducible expression of the Arabidopsis phytochelatin synthase AtPCS1 in the triple knockout resulted in the turnover of glutathione-S-bimane to the gamma-GluCys-bimane conjugate as observed in plants. Challenge of AtPCS1-expressing yeast cells with zinc, cadmium, and copper ions, which are known to activate AtPCS1, enhanced gamma-GluCys-bimane accumulation. Thus, initial catabolism of glutathione-S-conjugates is similar in plants and yeast, and yeast is a suitable system for a study of enzymes of the plant pathway.


Asunto(s)
Aminoaciltransferasas/metabolismo , Arabidopsis/metabolismo , Compuestos Bicíclicos con Puentes/metabolismo , Genes de Plantas , Glutatión/análogos & derivados , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Xenobióticos/metabolismo , Aminoaciltransferasas/genética , Arabidopsis/genética , Dipéptidos/metabolismo , Expresión Génica , Glutatión/metabolismo , Metales Pesados , Proteínas de Plantas/genética , Pirazoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA