Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Bioinformatics ; 24(1): 246, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308855

RESUMEN

BACKGROUND: Computational models of cell signaling networks are extremely useful tools for the exploration of underlying system behavior and prediction of response to various perturbations. By representing signaling cascades as executable Boolean networks, the previously developed rxncon ("reaction-contingency") formalism and associated Python package enable accurate and scalable modeling of signal transduction even in large (thousands of components) biological systems. The models are split into reactions, which generate states, and contingencies, that impinge on reactions; this avoids the so-called "combinatorial explosion" of system size. Boolean description of the biological system compensates for the poor availability of kinetic parameters which are necessary for quantitative models. Unfortunately, few tools are available to support rxncon model development, especially for large, intricate systems. RESULTS: We present the kboolnet toolkit ( https://github.com/Kufalab-UCSD/kboolnet , complete documentation at https://github.com/Kufalab-UCSD/kboolnet/wiki ), an R package and a set of scripts that seamlessly integrate with the python-based rxncon software and collectively provide a complete workflow for the verification, validation, and visualization of rxncon models. The verification script VerifyModel.R checks for responsiveness to repeated stimulations as well as consistency of steady state behavior. The validation scripts TruthTable.R, SensitivityAnalysis.R, and ScoreNet.R provide various readouts for the comparison of model predictions to experimental data. In particular, ScoreNet.R compares model predictions to a cloud-stored MIDAS-format experimental database to provide a numerical score for tracking model accuracy. Finally, the visualization scripts allow for graphical representations of model topology and behavior. The entire kboolnet toolkit is cloud-enabled, allowing for easy collaborative development; most scripts also allow for the extraction and analysis of individual user-defined "modules". CONCLUSION: The kboolnet toolkit provides a modular, cloud-enabled workflow for the development of rxncon models, as well as their verification, validation, and visualization. This will enable the creation of larger, more comprehensive, and more rigorous models of cell signaling using the rxncon formalism in the future.


Asunto(s)
Documentación , Transducción de Señal , Bases de Datos Factuales , Cinética , Programas Informáticos
2.
PLoS Comput Biol ; 18(1): e1009702, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35030172

RESUMEN

Boolean networks (BNs) have been developed to describe various biological processes, which requires analysis of attractors, the long-term stable states. While many methods have been proposed to detection and enumeration of attractors, there are no methods which have been demonstrated to be theoretically better than the naive method and be practically used for large biological BNs. Here, we present a novel method to calculate attractors based on a priori information, which works much and verifiably faster than the naive method. We apply the method to two BNs which differ in size, modeling formalism, and biological scope. Despite these differences, the method presented here provides a powerful tool for the analysis of both networks. First, our analysis of a BN studying the effect of the microenvironment during angiogenesis shows that the previously defined microenvironments inducing the specialized phalanx behavior in endothelial cells (ECs) additionally induce stalk behavior. We obtain this result from an extended network version which was previously not analyzed. Second, we were able to heuristically detect attractors in a cell cycle control network formalized as a bipartite Boolean model (bBM) with 3158 nodes. These attractors are directly interpretable in terms of genotype-to-phenotype relationships, allowing network validation equivalent to an in silico mutagenesis screen. Our approach contributes to the development of scalable analysis methods required for whole-cell modeling efforts.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Modelos Biológicos , Simulación por Computador , Bases de Datos Genéticas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Mutagénesis/genética
3.
FEMS Yeast Res ; 22(1)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35617157

RESUMEN

The cell division cycle in eukaryotic cells is a series of highly coordinated molecular interactions that ensure that cell growth, duplication of genetic material, and actual cell division are precisely orchestrated to give rise to two viable progeny cells. Moreover, the cell cycle machinery is responsible for incorporating information about external cues or internal processes that the cell must keep track of to ensure a coordinated, timely progression of all related processes. This is most pronounced in multicellular organisms, but also a cardinal feature in model organisms such as baker's yeast. The complex and integrative behavior is difficult to grasp and requires mathematical modeling to fully understand the quantitative interplay of the single components within the entire system. Here, we present a self-oscillating mathematical model of the yeast cell cycle that comprises all major cyclins and their main regulators. Furthermore, it accounts for the regulation of the cell cycle machinery by a series of external stimuli such as mating pheromones and changes in osmotic pressure or nutrient quality. We demonstrate how the external perturbations modify the dynamics of cell cycle components and how the cell cycle resumes after adaptation to or relief from stress.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ciclo Celular , División Celular , Ciclinas/genética , Ciclinas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
PLoS Comput Biol ; 11(4): e1004223, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25910075

RESUMEN

Maintenance of cellular size is a fundamental systems level process that requires balancing of cell growth with proliferation. This is achieved via the cell division cycle, which is driven by the sequential accumulation and destruction of cyclins. The regulatory network around these cyclins, particularly in G1, has been interpreted as a size control network in budding yeast, and cell size as being decisive for the START transition. However, it is not clear why disruptions in the G1 network may lead to altered size rather than loss of size control, or why the S-G2-M duration also depends on nutrients. With a mathematical population model comprised of individually growing cells, we show that cyclin translation would suffice to explain the observed growth rate dependence of cell volume at START. Moreover, we assess the impact of the observed bud-localisation of the G2 cyclin CLB2 mRNA, and find that localised cyclin translation could provide an efficient mechanism for measuring the biosynthetic capacity in specific compartments: The mother in G1, and the growing bud in G2. Hence, iteration of the same principle can ensure that the mother cell is strong enough to grow a bud, and that the bud is strong enough for independent life. Cell sizes emerge in the model, which predicts that a single CDK-cyclin pair per growth phase suffices for size control in budding yeast, despite the necessity of the cell cycle network around the cyclins to integrate other cues. Size control seems to be exerted twice, where the G2/M control affects bud size through bud-localized translation of CLB2 mRNA, explaining the dependence of the S-G2-M duration on nutrients. Taken together, our findings suggest that cell size is an emergent rather than a regulatory property of the network linking growth and proliferation.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Ciclina B/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/fisiología , Aumento de la Célula , Simulación por Computador , Ciclina B/genética , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/genética , Fracciones Subcelulares/metabolismo
5.
Mol Genet Genomics ; 289(5): 727-34, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24728588

RESUMEN

Systems biology aims at creating mathematical models, i.e., computational reconstructions of biological systems and processes that will result in a new level of understanding-the elucidation of the basic and presumably conserved "design" and "engineering" principles of biomolecular systems. Thus, systems biology will move biology from a phenomenological to a predictive science. Mathematical modeling of biological networks and processes has already greatly improved our understanding of many cellular processes. However, given the massive amount of qualitative and quantitative data currently produced and number of burning questions in health care and biotechnology needed to be solved is still in its early phases. The field requires novel approaches for abstraction, for modeling bioprocesses that follow different biochemical and biophysical rules, and for combining different modules into larger models that still allow realistic simulation with the computational power available today. We have identified and discussed currently most prominent problems in systems biology: (1) how to bridge different scales of modeling abstraction, (2) how to bridge the gap between topological and mechanistic modeling, and (3) how to bridge the wet and dry laboratory gap. The future success of systems biology largely depends on bridging the recognized gaps.


Asunto(s)
Investigación Biomédica/normas , Biología de Sistemas , Humanos , Modelos Biológicos , Estándares de Referencia
6.
Bioinformatics ; 29(11): 1467-8, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23574737

RESUMEN

MOTIVATION: The rapid accumulation of knowledge in the field of Systems Biology during the past years requires advanced, but simple-to-use, methods for the visualization of information in a structured and easily comprehensible manner. RESULTS: We have developed biographer, a web-based renderer and editor for reaction networks, which can be integrated as a library into tools dealing with network-related information. Our software enables visualizations based on the emerging standard Systems Biology Graphical Notation. It is able to import networks encoded in various formats such as SBML, SBGN-ML and jSBGN, a custom lightweight exchange format. The core package is implemented in HTML5, CSS and JavaScript and can be used within any kind of web-based project. It features interactive graph-editing tools and automatic graph layout algorithms. In addition, we provide a standalone graph editor and a web server, which contains enhanced features like web services for the import and export of models and visualizations in different formats. AVAILABILITY: The biographer tool can be used at and downloaded from the web page http://biographer.biologie.hu-berlin.de/. The different software packages, including a server-independent version as well as a web server for Windows and Linux based systems, are available at http://code.google.com/p/biographer/ under the open-source license LGPL


Asunto(s)
Fenómenos Bioquímicos , Programas Informáticos , Biología de Sistemas/métodos , Algoritmos , Internet
7.
J Appl Clin Med Phys ; 15(3): 4708, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24892344

RESUMEN

The aim is to study beam characteristics at large distances when focusing on the electron component. In particular, to investigate the utility of spoilers with various thicknesses as an electron source, as well as the effect of different spoiler-to-surface distances (STSD) on the beam characteristics and, consequently, on the dose in the superficial region. A MC model of a 15 MV Varian accelerator, validated earlier by experimental data at isocenter and extended distances used in large-field total body irradiation, is applied to evaluate beam characteristics at distances larger than 400 cm. Calculations are carried out using BEAMnrc/DOSXYZnrc code packages and phase space data are analyzed by the beam data processor BEAMdp. The electron component of the beam is analyzed at isocenter and extended distances, with and without spoilers as beam modifiers, assuming vacuum or air surrounding the accelerator head. Spoiler thickness of 1.6 cm is found to be optimal compared to thicknesses of 0.8 cm and 2.4 cm. The STSD variations should be taken into account when treating patients, in particular when the treatment protocols are based on a fixed distance to the patient central sagittal plane, and also, in order to maintain high dose in the superficial region.


Asunto(s)
Modelos Biológicos , Modelos Estadísticos , Método de Montecarlo , Aceleradores de Partículas/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Irradiación Corporal Total/instrumentación , Irradiación Corporal Total/métodos , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad
8.
Mol Syst Biol ; 8: 578, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22531118

RESUMEN

Intracellular signalling systems are highly complex. This complexity makes handling, analysis and visualisation of available knowledge a major challenge in current signalling research. Here, we present a novel framework for mapping signal-transduction networks that avoids the combinatorial explosion by breaking down the network in reaction and contingency information. It provides two new visualisation methods and automatic export to mathematical models. We use this framework to compile the presently most comprehensive map of the yeast MAP kinase network. Our method improves previous strategies by combining (I) more concise mapping adapted to empirical data, (II) individual referencing for each piece of information, (III) visualisation without simplifications or added uncertainty, (IV) automatic visualisation in multiple formats, (V) automatic export to mathematical models and (VI) compatibility with established formats. The framework is supported by an open source software tool that facilitates integration of the three levels of network analysis: definition, visualisation and mathematical modelling. The framework is species independent and we expect that it will have wider impact in signalling research on any system.


Asunto(s)
Modelos Moleculares , Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología , Programas Informáticos , Simulación por Computador , Bases de Datos Factuales , Investigación Empírica , Redes y Vías Metabólicas , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Biología de Sistemas/métodos
9.
Front Immunol ; 14: 1233680, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077364

RESUMEN

The NLRP3 inflammasome is a key regulator of inflammation that responds to a broad range of stimuli. The exact mechanism of activation has not been determined, but there is a consensus on cellular potassium efflux as a major common denominator. Once NLRP3 is activated, it forms high-order complexes together with NEK7 that trigger aggregation of ASC into specks. Typically, there is only one speck per cell, consistent with the proposal that specks form - or end up at - the centrosome. ASC polymerisation in turn triggers caspase-1 activation, leading to maturation and release of IL-1ß and pyroptosis, i.e., highly inflammatory cell death. Several gain-of-function mutations in the NLRP3 inflammasome have been suggested to induce spontaneous activation of NLRP3 and hence contribute to development and disease severity in numerous autoinflammatory and autoimmune diseases. Consequently, the NLRP3 inflammasome is of significant clinical interest, and recent attention has drastically improved our insight in the range of involved triggers and mechanisms of signal transduction. However, despite recent progress in knowledge, a clear and comprehensive overview of how these mechanisms interplay to shape the system level function is missing from the literature. Here, we provide such an overview as a resource to researchers working in or entering the field, as well as a computational model that allows for evaluating and explaining the function of the NLRP3 inflammasome system from the current molecular knowledge. We present a detailed reconstruction of the molecular network surrounding the NLRP3 inflammasome, which account for each specific reaction and the known regulatory constraints on each event as well as the mechanisms of drug action and impact of genetics when known. Furthermore, an executable model from this network reconstruction is generated with the aim to be used to explain NLRP3 activation from priming and activation to the maturation and release of IL-1ß and IL-18. Finally, we test this detailed mechanistic model against data on the effect of different modes of inhibition of NLRP3 assembly. While the exact mechanisms of NLRP3 activation remains elusive, the literature indicates that the different stimuli converge on a single activation mechanism that is additionally controlled by distinct (positive or negative) priming and licensing events through covalent modifications of the NLRP3 molecule. Taken together, we present a compilation of the literature knowledge on the molecular mechanisms on NLRP3 activation, a detailed mechanistic model of NLRP3 activation, and explore the convergence of diverse NLRP3 activation stimuli into a single input mechanism.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , Inflamación , Piroptosis
10.
BMC Genomics ; 13: 554, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23066959

RESUMEN

BACKGROUND: Spore germination of the yeast Saccharomyces cerevisiae is a multi-step developmental path on which dormant spores re-enter the mitotic cell cycle and resume vegetative growth. Upon addition of a fermentable carbon source and nutrients, the outer layers of the protective spore wall are locally degraded, the tightly packed spore gains volume and an elongated shape, and eventually the germinating spore re-enters the cell cycle. The regulatory pathways driving this process are still largely unknown. Here we characterize the global gene expression profiles of germinating spores and identify potential transcriptional regulators of this process with the aim to increase our understanding of the mechanisms that control the transition from cellular dormancy to proliferation. RESULTS: Employing detailed gene expression time course data we have analysed the reprogramming of dormant spores during the transition to proliferation stimulated by a rich growth medium or pure glucose. Exit from dormancy results in rapid and global changes consisting of different sequential gene expression subprograms. The regulated genes reflect the transition towards glucose metabolism, the resumption of growth and the release of stress, similar to cells exiting a stationary growth phase. High resolution time course analysis during the onset of germination allowed us to identify a transient up-regulation of genes involved in protein folding and transport. We also identified a network of transcription factors that may be regulating the global response. While the expression outputs following stimulation by rich glucose medium or by glucose alone are qualitatively similar, the response to rich medium is stronger. Moreover, spores sense and react to amino acid starvation within the first 30 min after germination initiation, and this response can be linked to specific transcription factors. CONCLUSIONS: Resumption of growth in germinating spores is characterized by a highly synchronized temporal organisation of up- and down-regulated genes which reflects the metabolic reshaping of the quickening spores.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas/fisiología , Factores de Transcripción/metabolismo , Ciclo Celular/genética , División Celular/genética , Proliferación Celular , Regulación hacia Abajo , Expresión Génica , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Pliegue de Proteína , Transporte de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Esporas Fúngicas/genética , Factores de Transcripción/genética , Transcripción Genética , Regulación hacia Arriba
11.
Mol Syst Biol ; 5: 281, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19536204

RESUMEN

Cellular signalling networks integrate environmental stimuli with the information on cellular status. These networks must be robust against stochastic fluctuations in stimuli as well as in the amounts of signalling components. Here, we challenge the yeast HOG signal-transduction pathway with systematic perturbations in components' expression levels under various external conditions in search for nodes of fragility. We observe a substantially higher frequency of fragile nodes in this signal-transduction pathway than that has been observed for other cellular processes. These fragilities disperse without any clear pattern over biochemical functions or location in pathway topology and they are largely independent of pathway activation by external stimuli. However, the strongest toxicities are caused by pathway hyperactivation. In silico analysis highlights the impact of model structure on in silico robustness, and suggests complex formation and scaffolding as important contributors to the observed fragility patterns. Thus, in vivo robustness data can be used to discriminate and improve mathematical models.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Análisis por Conglomerados , Simulación por Computador , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Concentración Osmolar , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Estrés Fisiológico
12.
NPJ Syst Biol Appl ; 6: 2, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31934349

RESUMEN

The metabolic modelling community has established the gold standard for bottom-up systems biology with reconstruction, validation and simulation of mechanistic genome-scale models. Similar methods have not been established for signal transduction networks, where the representation of complexes and internal states leads to scalability issues in both model formulation and execution. While rule- and agent-based methods allow efficient model definition and execution, respectively, model parametrisation introduces an additional layer of uncertainty due to the sparsity of reliably measured parameters. Here, we present a scalable method for parameter-free simulation of mechanistic signal transduction networks. It is based on rxncon and uses a bipartite Boolean logic with separate update rules for reactions and states. Using two generic update rules, we enable translation of any rxncon model into a unique Boolean model, which can be used for network validation and simulation-allowing the prediction of system-level function directly from molecular mechanistic data. Through scalable model definition and simulation, and the independence of quantitative parameters, it opens up for simulation and validation of mechanistic genome-scale models of signal transduction networks.


Asunto(s)
Modelos Biológicos , Transducción de Señal , Biología de Sistemas/métodos , Simulación por Computador , Genoma
13.
Nat Commun ; 10(1): 1308, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30899000

RESUMEN

Understanding how cellular functions emerge from the underlying molecular mechanisms is a key challenge in biology. This will require computational models, whose predictive power is expected to increase with coverage and precision of formulation. Genome-scale models revolutionised the metabolic field and made the first whole-cell model possible. However, the lack of genome-scale models of signalling networks blocks the development of eukaryotic whole-cell models. Here, we present a comprehensive mechanistic model of the molecular network that controls the cell division cycle in Saccharomyces cerevisiae. We use rxncon, the reaction-contingency language, to neutralise the scalability issues preventing formulation, visualisation and simulation of signalling networks at the genome-scale. We use parameter-free modelling to validate the network and to predict genotype-to-phenotype relationships down to residue resolution. This mechanistic genome-scale model offers a new perspective on eukaryotic cell cycle control, and opens up for similar models-and eventually whole-cell models-of human cells.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Modelos Genéticos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Redes Reguladoras de Genes , Estudios de Asociación Genética , Redes y Vías Metabólicas/genética , Lenguajes de Programación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Biología de Sistemas/métodos
14.
Methods Mol Biol ; 1945: 71-118, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30945243

RESUMEN

We present a protocol for building, validating, and simulating models of signal transduction networks. These networks are challenging modeling targets due to the combinatorial complexity and sparse data, which have made it a major challenge even to formalize the current knowledge. To address this, the community has developed methods to model biomolecular reaction networks based on site dynamics. The strength of this approach is that reactions and states can be defined at variable resolution, which makes it possible to adapt the model resolution to the empirical data. This improves both scalability and accuracy, making it possible to formalize large models of signal transduction networks. Here, we present a method to build and validate large models of signal transduction networks. The workflow is based on rxncon, the reaction-contingency language. In a five-step process, we create a mechanistic network model, convert it into an executable Boolean model, use the Boolean model to evaluate and improve the network, and finally export the rxncon model into a rule-based format. We provide an introduction to the rxncon language and an annotated, step-by-step protocol for the workflow. Finally, we create a small model of the insulin signaling pathway to illustrate the protocol, together with some of the challenges-and some of their solutions-in modeling signal transduction.


Asunto(s)
Simulación por Computador , Transducción de Señal/genética , Programas Informáticos , Biología de Sistemas/métodos , Modelos Biológicos
15.
Biochim Biophys Acta ; 1810(10): 913, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21791236
16.
Methods Enzymol ; 428: 29-45, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17875410

RESUMEN

Osmoregulation is the active control of the cellular water balance and encompasses homeostatic mechanisms crucial for life. The osmoregulatory system in the yeast Saccharomyces cerevisiae is particularly well understood. Key to yeast osmoregulation is the production and accumulation of the compatible solute glycerol, which is partly controlled by the high osmolarity glycerol (HOG) signaling system. Genetic analyses combined with studies on protein-protein interactions have revealed the wiring scheme of the HOG signaling network, a branched mitogen-activated protein (MAP) kinase (MAPK) pathway that eventually converges on the MAPK Hog1. Hog1 is activated following cell shrinking and controls posttranscriptional processes in the cytosol as well as gene expression in the nucleus. HOG pathway activity can easily and rapidly be controlled experimentally by extracellular stimuli, and signaling and adaptation can be separated by a system of forced adaptation. This makes yeast osmoregulation suitable for studies on system properties of signaling and cellular adaptation via mathematical modeling. Computational simulations and parallel quantitative time course experimentation on different levels of the regulatory system have provided a stepping stone toward a holistic understanding, revealing how the HOG pathway can combine rigorous feedback control with maintenance of signaling competence. The abundant tools make yeast a suitable model for an integrated analysis of cellular osmoregulation. Maintenance of the cellular water balance is fundamental for life. All cells, even those in multicellular organisms with an organism-wide osmoregulation, have the ability to actively control their water balance. Osmoregulation encompasses homeostatic processes that maintain an appropriate intracellular environment for biochemical processes as well as turgor of cells and organism. In the laboratory, the osmoregulatory system is studied most conveniently as a response to osmotic shock, causing rapid and dramatic changes in the extracellular water activity. Those rapid changes mediate either water efflux (hyperosmotic shock), and hence cell shrinkage, or influx (hypoosmotic shock), causing cell swelling. The yeast S. cerevisiae, as a free-living organism experiencing both slow and rapid changes in extracellular water activity, has proven a suitable and genetically tractable experimental system in studying the underlying signaling pathways and regulatory processes governing osmoregulation. Although far from complete, the present picture of yeast osmoregulation is both extensive and detailed (de Nadal et al., 2002; Hohmann, 2002; Klipp et al., 2005). Simulations using mathematical models combined with time course measurements of different molecular processes in signaling and adaptation have allowed elucidation of the first system properties on the yeast osmoregulatory network.


Asunto(s)
Presión Osmótica , Saccharomyces cerevisiae/fisiología , Equilibrio Hidroelectrolítico/fisiología , Acuagliceroporinas/fisiología , Regulación hacia Abajo , Glicerol/metabolismo , Proteínas de la Membrana/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Transducción de Señal , Regulación hacia Arriba
17.
Biotechnol J ; 11(9): 1158-68, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26952199

RESUMEN

Systems biology holds the promise to integrate multiple sources of information in order to build ever more complete models of cellular function. To do this, the field must overcome two significant challenges. First, the current strategy to model average cells must be replaced with population based models accounting for cell-to-cell variability. Second, models must be integrated with each other and with basic cellular function. This requires a core model of cellular physiology as well as a multiscale simulation platform to support large-scale simulation of culture or tissues from single cells. Here, we present such a simulation platform with a core model of yeast physiology as scaffold to integrate and simulate SBML models. The software automates this integration helping users simulate their model of choice in context of the cell division cycle. We benchmark model merging, simulation and analysis by integrating a minimal model of osmotic stress into the core model and analyzing it. We characterize the effect of single cell differences on the dynamics of osmoadaptation, estimating when normal cell growth is resumed and obtaining an explanation for experimentally observed glycerol dynamics based on population dynamics. Hence, the platform can be used to reconcile single cell and population level data.


Asunto(s)
Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Análisis de la Célula Individual/métodos , Adaptación Fisiológica , Ciclo Celular , Modelos Biológicos , Presión Osmótica , Programas Informáticos , Biología de Sistemas
18.
NPJ Syst Biol Appl ; 2: 16011, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28725471

RESUMEN

Systems Biology is an approach to biology and medicine that has the potential to lead to a better understanding of how biological properties emerge from the interaction of genes, proteins, molecules, cells and organisms. The approach aims at elucidating how these interactions govern biological function by employing experimental data, mathematical models and computational simulations. As Systems Biology is inherently multidisciplinary, education within this field meets numerous hurdles including departmental barriers, availability of all required expertise locally, appropriate teaching material and example curricula. As university education at the Bachelor's level is traditionally built upon disciplinary degrees, we believe that the most effective way to implement education in Systems Biology would be at the Master's level, as it offers a more flexible framework. Our team of experts and active performers of Systems Biology education suggest here (i) a definition of the skills that students should acquire within a Master's programme in Systems Biology, (ii) a possible basic educational curriculum with flexibility to adjust to different application areas and local research strengths, (iii) a description of possible career paths for students who undergo such an education, (iv) conditions that should improve the recruitment of students to such programmes and (v) mechanisms for collaboration and excellence spreading among education professionals. With the growing interest of industry in applying Systems Biology approaches in their fields, a concerted action between academia and industry is needed to build this expertise. Here we present a reflection of the European situation and expertise, where most of the challenges we discuss are universal, anticipating that our suggestions will be useful internationally. We believe that one of the overriding goals of any Systems Biology education should be a student's ability to phrase and communicate research questions in such a manner that they can be solved by the integration of experiments and modelling, as well as to communicate and collaborate productively across different experimental and theoretical disciplines in research and development.

19.
IEEE Trans Biomed Eng ; 63(10): 2007-14, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27305665

RESUMEN

OBJECTIVE: Whole-cell (WC) modeling is a promising tool for biological research, bioengineering, and medicine. However, substantial work remains to create accurate comprehensive models of complex cells. METHODS: We organized the 2015 Whole-Cell Modeling Summer School to teach WC modeling and evaluate the need for new WC modeling standards and software by recoding a recently published WC model in the Systems Biology Markup Language. RESULTS: Our analysis revealed several challenges to representing WC models using the current standards. CONCLUSION: We, therefore, propose several new WC modeling standards, software, and databases. SIGNIFICANCE: We anticipate that these new standards and software will enable more comprehensive models.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Programas Informáticos , Biología de Sistemas/normas , Biología Computacional , Técnicas Citológicas , Femenino , Humanos , Masculino , Biología de Sistemas/educación , Biología de Sistemas/organización & administración
20.
BMC Syst Biol ; 9: 45, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26259567

RESUMEN

BACKGROUND: Cellular decision-making is governed by molecular networks that are highly complex. An integrative understanding of these networks on a genome wide level is essential to understand cellular health and disease. In most cases however, such an understanding is beyond human comprehension and requires computational modeling. Mathematical modeling of biological networks at the level of biochemical details has hitherto relied on state transition models. These are typically based on enumeration of all relevant model states, and hence become very complex unless severely--and often arbitrarily--reduced. Furthermore, the parameters required for genome wide networks will remain underdetermined for the conceivable future. Alternatively, networks can be simulated by Boolean models, although these typically sacrifice molecular detail as well as distinction between different levels or modes of activity. However, the modeling community still lacks methods that can simulate genome scale networks on the level of biochemical reaction detail in a quantitative or semi quantitative manner. RESULTS: Here, we present a probabilistic bipartite Boolean modeling method that addresses these issues. The method is based on the reaction-contingency formalism, and enables fast simulation of large networks. We demonstrate its scalability by applying it to the yeast mitogen-activated protein kinase (MAPK) network consisting of 140 proteins and 608 nodes. CONCLUSION: The probabilistic Boolean model can be generated and parameterized automatically from a rxncon network description, using only two global parameters, and its qualitative behavior is robust against order of magnitude variation in these parameters. Our method can hence be used to simulate the outcome of large signal transduction network reconstruction, with little or no overhead in model creation or parameterization.


Asunto(s)
Modelos Biológicos , Transducción de Señal , Retroalimentación Fisiológica , Sistema de Señalización de MAP Quinasas , Probabilidad , Saccharomyces cerevisiae/citología , Procesos Estocásticos , Biología de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA