Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Environ Sci Technol ; 52(5): 3071-3080, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29388764

RESUMEN

This study was conducted to compare the cardiac effects of particulate matter (PM)- (SA-PM) and ozone(O3)-enhanced (SA-O3) smog atmospheres in mice. Based on our previous findings of filtered diesel exhaust we hypothesized that SA-O3 would cause greater cardiac dysfunction than SA-PM. Radiotelemetered mice were exposed to either SA-PM, SA-O3, or filtered air (FA) for 4 h. Heart rate (HR) and electrocardiogram were recorded continuously before, during and after exposure. Both SA-PM and SA-O3 increased heart rate variability (HRV) but only SA-PM increased HR. Normalization of responses to total hydrocarbons, gas-only hydrocarbons and PM concentration were performed to assess the relative contribution of each phase given the compositional variability. Normalization to PM concentration revealed that SA-O3 was more potent in increasing HRV, arrhythmogenesis, and causing ventilatory changes. However, there were no differences when the responses were normalized to total or gas-phase only hydrocarbons. Thus, this study demonstrates that a single exposure to smog causes cardiac effects in mice. Although the responses of SA-PM and SA-O3 are similar, the latter is more potent in causing electrical disturbances and breathing changes potentially due to the effects of irritant gases, which should therefore be accounted for more rigorously in health assessments.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Animales , Atmósfera , Exposición por Inhalación , Ratones , Material Particulado , Esmog
2.
Environ Sci Technol ; 52(17): 10067-10077, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30075627

RESUMEN

It is important to understand molecular effects on plants exposed to compounds released from use of products containing engineered nanomaterials. Here, we present mRNA sequencing data on transcriptome impacts to Douglas-fir following 2 weeks of sublethal exposure to 30:1 diluted airborne emissions released from combustion of diesel fuel containing engineered CeO2 nanoparticle catalysts (DECe). Our hypothesis was that chamber exposure to DECe would induce distinct transcriptome changes in seedling needles compared with responses to conventional diesel exhaust (DE) or filtered DECe Gas Phase. Significantly increased uptake/binding of Ce in needles of DECe treated seedlings was 2.7X above background levels and was associated with altered gene expression patterns. All 225 Blast2GO gene ontologies (GOs) enriched by up-regulated DECe transcripts were nested within GOs for DE, however, 29 of 31 enriched GOs for down-regulated DECe transcripts were unique. MapMan analysis also identified three pathways enriched with DECe down-regulated transcripts. There was prominent representation of genes with attenuated expression in transferase, transporter, RNA regulation and protein degradation GOs and pathways. CeO2 nanoparticle additive decreased and shifted molecular impact of diesel emissions. Wide-spread use of such products and chronic environmental exposure to DECe may adversely affect plant physiology and development.


Asunto(s)
Nanopartículas , Pseudotsuga , Gasolina , Transcriptoma , Emisiones de Vehículos
3.
Environ Sci Technol ; 52(5): 3054-3061, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29382191

RESUMEN

Early life nutritional deficiencies can lead to increased cardiovascular susceptibility to environmental exposures. Thus, the purpose of this study was to examine the effect of early life persistent vitamin D deficiency (VDD) on the cardiopulmonary response to a particulate matter-enhanced photochemical smog. Mice were fed a VDD or normal diet (ND) after weaning. At 17 weeks of age, mice were implanted with radiotelemeters to monitor electrocardiogram, heart rate (HR), and heart rate variability (HRV). Ventilatory function was measured throughout the diet before and after smog exposure using whole-body plethysmography. VDD mice had lower HR, increased HRV, and decreased tidal volume compared with ND. Regardless of diet, HR decreased during air exposure; this response was blunted by smog in ND mice and to a lesser degree in VDD. When compared with ND, VDD increased HRV during air exposure and more so with smog. However, smog only increased cardiac arrhythmias in ND mice. This study demonstrates that VDD alters the cardiopulmonary response to smog, highlighting the possible influence of nutritional factors in determining responses to air pollution. The mechanism of how VDD induces these effects is currently unknown, but modifiable factors should be considered when performing risk assessment of complex air pollution atmospheres.


Asunto(s)
Contaminación del Aire , Deficiencia de Vitamina D , Animales , Exposición a Riesgos Ambientales , Ratones , Material Particulado , Esmog
4.
Environ Sci Technol ; 52(5): 3037-3044, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29381868

RESUMEN

The production of photochemical atmospheres under controlled conditions in an irradiation chamber permits the manipulation of parameters that influence the resulting air-pollutant chemistry and potential biological effects. To date, no studies have examined how contrasting atmospheres with a similar Air Quality Health Index (AQHI), but with differing ratios of criteria air pollutants, might differentially affect health end points. Here, we produced two atmospheres with similar AQHIs based on the final concentrations of ozone, nitrogen dioxide, and particulate matter (PM2.5). One simulated atmosphere (SA-PM) generated from irradiation of ∼23 ppmC gasoline, 5 ppmC α-pinene, 529 ppb NO, and 3 µg m-3 (NH4)2SO4 as a seed resulted in an average of 976 µg m-3 PM2.5, 326 ppb NO2, and 141 ppb O3 (AQHI 97.7). The other atmosphere (SA-O3) generated from 8 ppmC gasoline, 5 ppmC isoprene, 874 ppb NO, and 2 µg m-3 (NH4)2SO4 resulted in an average of 55 µg m-3 PM2.5, 643 ppb NO2, and 430 ppb O3 (AQHI of 99.8). Chemical speciation by gas chromatography showed that photo-oxidation degraded the organic precursors and promoted the de novo formation of secondary reaction products such as formaldehyde and acrolein. Further work in accompanying papers describe toxicological outcomes from the two distinct photochemical atmospheres.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Dióxido de Nitrógeno , Material Particulado
5.
Environ Sci Technol ; 52(5): 3045-3053, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29406743

RESUMEN

No study has evaluated the mutagenicity of atmospheres with a calculated air quality health index (AQHI). Thus, we generated in a UV-light-containing reaction chamber two simulated atmospheres (SAs) with similar AQHIs but different proportions of criteria pollutants and evaluated them for mutagenicity in three Salmonella strains at the air-agar interface. We continuously injected into the chamber gasoline, nitric oxide, and ammonium sulfate, as well as either α-pinene to produce SA-PM, which had a high concentration of particulate matter (PM): 119 ppb ozone (O3), 321 ppb NO2, and 1007 µg/m3 PM2.5; or isoprene to produce SA-O3, which had a high ozone (O3) concentration: 415 ppb O3, 633 ppb NO2, and 55 µg/m3 PM2.5. Neither PM2.5 extracts, NO2, or O3 alone, nor nonphoto-oxidized mixtures were mutagenic or cytotoxic. Both photo-oxidized atmospheres were largely direct-acting base-substitution mutagens with similar mutagenic potencies in TA100 and TA104. The mutagenic potencies [(revertants/h)/(mgC/m3)] of SA-PM (4.3 ± 0.4) and SA-O3 (9.5 ± 1.3) in TA100 were significantly different ( P < 0.0001), but the mutation spectra were not ( P = 0.16), being ∼54% C → T and ∼46% C → A. Thus, the AQHI may have some predictive value for the mutagenicity of the gas phase of air.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Atmósfera , Pruebas de Mutagenicidad , Mutágenos , Material Particulado
6.
Environ Sci Technol ; 52(5): 3062-3070, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29384667

RESUMEN

Air pollution is a diverse and dynamic mixture of gaseous and particulate matter, limiting our understanding of associated adverse health outcomes. The biological effects of two simulated smog atmospheres (SA) with different compositions but similar air quality health indexes were compared in a nonobese diabetic rat model (Goto-Kakizaki, GK) and three mouse immune models (house dust mite (HDM) allergy, antibody response to heat-killed pneumococcus, and resistance to influenza A infection). In GK rats, both SA-PM (high particulate matter) and SA-O3 (high ozone) decreased cholesterol levels immediately after a 4-h exposure, whereas only SA-O3 increased airflow limitation. Airway responsiveness to methacholine was increased in HDM-allergic mice compared with nonallergic mice, but exposure to SA-PM or SA-O3 did not significantly alter responsiveness. Exposure to SA-PM did not affect the IgM response to pneumococcus, and SA-O3 did not affect virus titers, although inflammatory cytokine levels were decreased in mice infected at the end of a 7-day exposure. Collectively, acute SA exposures produced limited health effects in animal models of metabolic and immune diseases. Effects of SA-O3 tended to be greater than those of SA-PM, suggesting that gas-phase components in photochemically derived multipollutant mixtures may be of greater concern than secondary organic aerosol PM.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Animales , Atmósfera , Ratones , Material Particulado , Ratas , Roedores , Esmog
7.
Environ Sci Technol ; 49(19): 11543-50, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26332991

RESUMEN

Disposal of electronic waste (e-waste) in landfills, incinerators, or at rudimentary recycling sites can lead to the release of toxic chemicals into the environment and increased health risks. Developing e-waste recycling technologies at commercial facilities can reduce the release of toxic chemicals and efficiently recover valuable materials. While these e-waste operations represent a vast improvement over previous approaches, little is known about environmental releases, workplace exposures, and potential health impacts. In this study, airborne particulate matter (PM) was measured at various locations within a modern U.S.-based e-waste recycling facility that utilized mechanical processing. In addition, composite size fractionated PM (coarse, fine and ultrafine) samples were collected, extracted, chemically analyzed, and given by oropharyngeal aspiration to mice or cultured with lung slices for lung toxicity tests. Indoor total PM concentrations measured during the study ranged from 220 to 1200 µg/m(3). In general, the coarse PM (2.5-10 µm) was 3-4 times more abundant than fine/ultrafine PM (<2.5 µm). The coarse PM contained higher levels of Ni, Pb, and Zn (up to 6.8 times) compared to the fine (0.1-2.5 µm) and ultrafine (<0.1 µm) PM. Compared to coarse PM measurements from a regional near-roadway study, Pb and Ni were enriched 170 and 20 times, respectively, in the indoor PM, with other significant enrichments (>10 times) observed for Zn and Sb, modest enrichments (>5 times) for Cu and Sr, and minor enrichments (>2 times) for Cr, Cd, Mn, Ca, Fe, and Ba. Negligible enrichment (<2 times) or depletion (<1 time) were observed for Al, Mg, Ti, Si, and V. The coarse PM fraction elicited significant pro-inflammatory responses in the mouse lung at 24 h postexposure compared to the fine and ultrafine PM, and similar toxicity outcomes were observed in the lung slice model. We conclude that exposure to coarse PM from the facility caused substantial inflammation in the mouse lung and enrichment of these metals compared to levels normally present in the ambient PM could be of potential health concern.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire Interior/análisis , Residuos Electrónicos , Reciclaje , Contaminantes Atmosféricos/química , Animales , Femenino , Éteres Difenilos Halogenados/análisis , Pulmón/efectos de los fármacos , Metales/análisis , Ratones Endogámicos , Técnicas de Cultivo de Órganos , Tamaño de la Partícula , Material Particulado/análisis , Neumonía/inducido químicamente , Pruebas de Toxicidad Aguda/métodos , Estados Unidos
8.
Environ Sci Technol ; 49(6): 3930-9, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25710269

RESUMEN

Near-road exposure to air pollutants has been associated with decreased lung function and other adverse health effects in susceptible populations. This study was designed to investigate whether different types of near-road particulate matter (PM) contribute to exacerbation of allergic asthma. Samples of upwind and downwind coarse, fine, and ultrafine PM were collected using a wind direction-actuated ChemVol sampler at a single site 100 m from Interstate-96 in Detroit, MI during winter 2010/2011. Upwind PM was enriched in crustal and wood combustion sources while downwind PM was dominated by traffic sources. Control and ovalbumin (OVA)-sensitized BALB/cJ mice were exposed via oropharyngeal (OP) aspiration to 20 or 100 µg of each PM sample 2 h prior to OP challenge with OVA. In OVA-allergic mice, 100 µg of downwind coarse PM caused greater increases than downwind fine/ultrafine PM in bronchoalveolar lavage neutrophils, eosinophils, and lactate dehydrogenase. Upwind fine PM (100 µg) produced greater increases in neutrophils and eosinophils compared to other upwind size fractions. Cytokine (IL-5) levels in BAL fluid also increased markedly following 100 µg downwind coarse and downwind ultrafine PM exposures. These findings indicate coarse PM downwind and fine PM upwind of an interstate highway promote inflammation in allergic mice.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Inflamación/inducido químicamente , Material Particulado/toxicidad , Emisiones de Vehículos/toxicidad , Contaminantes Atmosféricos/análisis , Animales , Eosinófilos/efectos de los fármacos , Femenino , Inflamación/metabolismo , Exposición por Inhalación , Interleucina-5/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Michigan , Neutrófilos/efectos de los fármacos , Material Particulado/análisis , Emisiones de Vehículos/análisis , Viento
9.
Inhal Toxicol ; 27(11): 557-63, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26514783

RESUMEN

CONTEXT: Diesel exhaust (DE) has been shown to increase the risk of cardiac arrhythmias. Although biodiesel has been proposed as a "safer" alternative to diesel, it is still uncertain whether it actually poses less threat. OBJECTIVE: We hypothesized that exposure to pure or 20% soy biodiesel exhaust (BDE) would cause less sensitivity to aconitine-induced arrhythmia than DE in rats. METHODS: Spontaneously hypertensive (SH) rats implanted with radiotelemeters were exposed once or for 5 d (4 h) to either 50 mg/m(3) (low), 150 mg/m(3) (medium), or 500 mg/m(3) (high) of DE (B0), 20% (B20) or 100% (B100) soy biodiesel exhaust. Arrhythmogenesis was assessed 24 h later by continuous infusion of aconitine, an arrhythmogenic drug, while heart rate (HR), and electrocardiogram (ECG) were monitored. RESULTS: Rats exposed once or for 5 d to low, medium, or high B0 developed arrhythmia at significantly lower doses of aconitine than controls, whereas rats exposed to B20 were only consistently sensitive after 5 d of the high concentration. B100 caused mild arrhythmia sensitivity at the low concentration, only after 5 d of exposure at the medium concentration and after either a single or 5 d at the high concentration. DISCUSSION AND CONCLUSIONS: These data demonstrate that exposure to B20 causes less sensitivity to arrhythmia than B0 and B100. This diminished effect may be due to lower irritant components such as acrolein and nitrogen oxides. Thus, in terms of cardiac health, B20 may be a safer option than both of the pure forms.


Asunto(s)
Aconitina/toxicidad , Arritmias Cardíacas/inducido químicamente , Biocombustibles/toxicidad , Glycine max/toxicidad , Exposición por Inhalación/efectos adversos , Emisiones de Vehículos/toxicidad , Contaminantes Atmosféricos/toxicidad , Animales , Arritmias Cardíacas/patología , Relación Dosis-Respuesta a Droga , Masculino , Ratas , Ratas Endogámicas SHR
10.
Part Fibre Toxicol ; 11: 29, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24934158

RESUMEN

BACKGROUND: Emissions from a large peat fire in North Carolina in 2008 were associated with increased hospital admissions for asthma and the rate of heart failure in the exposed population. Peat fires often produce larger amounts of smoke and last longer than forest fires, however few studies have reported on their toxicity. Moreover, reliable alternatives to traditional animal toxicity testing are needed to reduce the number of animals required for hazard identification and risk assessments. METHODS: Size-fractionated particulate matter (PM; ultrafine, fine, and coarse) were obtained from the peat fire while smoldering (ENCF-1) or when nearly extinguished (ENCF-4). Extracted samples were analyzed for chemical constituents and endotoxin content. Female CD-1 mice were exposed via oropharyngeal aspiration to 100 µg/mouse, and assessed for relative changes in lung and systemic markers of injury and inflammation. At 24 h post-exposure, hearts were removed for ex vivo functional assessments and ischemic challenge. Lastly, 8 mm diameter lung slices from CD-1 mice were exposed (11 µg) ± co-treatment of PM with polymyxin B (PMB), an endotoxin-binding compound. RESULTS: On an equi-mass basis, coarse ENCF-1 PM had the highest endotoxin content and elicited the greatest pro-inflammatory responses in the mice including: increases in bronchoalveolar lavage fluid protein, cytokines (IL-6, TNF-α, and MIP-2), neutrophils and intracellular reactive oxygen species (ROS) production. Exposure to fine or ultrafine particles from either period failed to elicit significant lung or systemic effects. In contrast, mice exposed to ENCF-1 ultrafine PM developed significantly decreased cardiac function and greater post-ischemia-associated myocardial infarction. Finally, similar exposures to mouse lung slices induced comparable patterns of cytokine production; and these responses were significantly attenuated by PMB. CONCLUSIONS: The findings suggest that exposure to coarse PM collected during a peat fire causes greater lung inflammation in association with endotoxin and ROS, whereas the ultrafine PM preferentially affected cardiac responses. In addition, lung tissue slices were shown to be a predictive, alternative assay to assess pro-inflammatory effects of PM of differing size and composition. Importantly, these toxicological findings were consistent with the cardiopulmonary health effects noted in epidemiologic reports from exposed populations.


Asunto(s)
Incendios , Cardiopatías/inducido químicamente , Enfermedades Pulmonares/inducido químicamente , Pulmón/patología , Microtomía/métodos , Material Particulado/toxicidad , Suelo/química , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Animales , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Endotoxinas/toxicidad , Monitoreo del Ambiente , Femenino , Cardiopatías/patología , Inflamación/inducido químicamente , Inflamación/patología , Enfermedades Pulmonares/patología , Ratones , Miocardio/patología , Necrosis/inducido químicamente , Necrosis/patología , North Carolina , Tamaño de la Partícula , Material Particulado/análisis , Neumonía/inducido químicamente , Neumonía/patología , Polimixina B/farmacología , Valor Predictivo de las Pruebas , Especies Reactivas de Oxígeno/metabolismo
11.
Toxicol Appl Pharmacol ; 268(2): 232-40, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23415681

RESUMEN

Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or l-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500µg/m(3)), 4h/day for 2days or 5days/week for 4weeks. Acute and 4-week gas and DE exposures increased neutrophils and γ-glutamyl transferase (γ-GT) activity in lavage fluid of WKY and SH rats. DE (4weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-α, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while l-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF γ-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by l-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-α, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Hipertensión/fisiopatología , Enfermedades Pulmonares/etiología , Emisiones de Vehículos/toxicidad , Albúminas/metabolismo , Animales , Aterosclerosis/etiología , Enfermedades Cardiovasculares/fisiopatología , Hidralazina/farmacología , Hipertensión/tratamiento farmacológico , Enfermedades Pulmonares/fisiopatología , Masculino , Contracción Miocárdica/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , Agregación Plaquetaria , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
12.
Am J Respir Cell Mol Biol ; 46(4): 454-60, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22052876

RESUMEN

Air pollutant exposure is linked with childhood asthma incidence and exacerbations, and maternal exposure to airborne pollutants during pregnancy increases airway hyperreactivity (AHR) in offspring. To determine if exposure to diesel exhaust (DE) during pregnancy worsened postnatal ozone-induced AHR, timed pregnant C57BL/6 mice were exposed to DE (0.5 or 2.0 mg/m(3)) 4 hours daily from Gestation Day 9-17, or received twice-weekly oropharyngeal aspirations of the collected DE particles (DEPs). Placentas and fetal lungs were harvested on Gestation Day 18 for cytokine analysis. In other litters, pups born to dams exposed to air or DE, or to dams treated with aspirated diesel particles, were exposed to filtered air or 1 ppm ozone beginning the day after birth, for 3 hours per day, 3 days per week for 4 weeks. Additional pups were monitored after a 4-week recovery period. Diesel inhalation or aspiration during pregnancy increased levels of placental and fetal lung cytokines. There were no significant effects on airway leukocytes, but prenatal diesel augmented ozone-induced elevations of bronchoalveolar lavage cytokines at 4 weeks. Mice born to the high-concentration diesel-exposed dams had worse ozone-induced AHR, which persisted in the 4-week recovery animals. Prenatal diesel exposure combined with postnatal ozone exposure also worsened secondary alveolar crest development. We conclude that maternal inhalation of DE in pregnancy provokes a fetal inflammatory response that, combined with postnatal ozone exposure, impairs alveolar development, and causes a more severe and long-lasting AHR to ozone exposure.


Asunto(s)
Hiperreactividad Bronquial/etiología , Exposición por Inhalación , Exposición Materna , Ozono/efectos adversos , Emisiones de Vehículos/toxicidad , Contaminantes Atmosféricos/efectos adversos , Animales , Animales Recién Nacidos , Citocinas/metabolismo , Femenino , Edad Gestacional , Pulmón/efectos de los fármacos , Pulmón/embriología , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Placenta/efectos de los fármacos , Placenta/metabolismo , Neumonía/etiología , Embarazo , Alveolos Pulmonares/diagnóstico por imagen , Alveolos Pulmonares/efectos de los fármacos , Ultrasonografía
13.
Sci Total Environ ; 739: 139488, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32526531

RESUMEN

Emissions from solid-fuel burning cookstoves are associated with 3 to 4 million premature deaths annually and contribute significantly to impacts on climate. Pellet-fueled gasifier stoves have some emission factors (EFs) approaching those of gas-fuel (liquid petroleum gas) stoves; however, their emissions have not been evaluated for biological effects. Here we used a new International Organization for Standardization (ISO) testing protocol to determine pollutant- and mutagenicity-EFs for a stove designed for pellet fuel, the Mimi Moto, and for two other forced-draft stoves, Xunda and Philips HD4012, burning pellets of hardwood or peanut hulls. The Salmonella assay-based mutagenicity-EFs (revertants/megajouledelivered) spanned three orders of magnitude and correlated highly (r = 0.99; n = 5) with EFs of the sum of 32 particle-phase polycyclic aromatic hydrocarbons (PAHs). The Mimi Moto/hardwood pellet combination had total-PAH- and mutagenicity-EFs 99.2 and 96.6% lower, respectively, compared to data published previously for the Philips stove burning non-pelletized hardwood, and 100 and 99.8% lower, respectively, compared to those of a wood-fueled three-stone fire. The Xunda burning peanut hull pellets had the highest fuel energy-based mutagenicity-EF (revertants/megajoulethermal) of the pellet stove/fuel combinations tested, which was between that of diesel exhaust, a known human carcinogen, and a natural-draft wood stove. Although the Mimi Moto burning hardwood pellets had the lowest fuel energy-based mutagenicity-EF, this value was between that of utility coal and utility wood boilers. This advanced stove/fuel combination has the potential to greatly reduce emissions in contrast to a traditional stove, but adequate ventilation is required to approach acceptable levels of indoor air quality.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Ambientales , Culinaria , Humanos , Mutágenos , Material Particulado/análisis , Madera/química
14.
Neurotoxicol Teratol ; 30(3): 167-74, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18299185

RESUMEN

The aliphatic hydrocarbon perchloroethylene (PCE) has been associated with neurobehavioral dysfunction including reduced attention in humans. The current study sought to assess the effects of inhaled PCE on sustained attention in rats performing a visual signal detection task (SDT). Due to its similarities in physiological effect to toluene and trichloroethylene (TCE), two other commonly used volatile organic compounds (VOCs) known to reduce attention in rats, we hypothesized (1) that acute inhalation of PCE (0, 500, 1000, 1500 ppm) would disrupt performance of the SDT in rats; (2) that impaired accuracy would result from changes in attention to the visual signal; and (3) that these acute effects would diminish upon repetition of exposure. PCE impaired performance of the sustained attention task as evidenced by reduced accuracy [P(correct): 500 to 1500 ppm], elevated response time [RT: 1000 and 1500 ppm] and reduced number of trials completed [1500 ppm]. These effects were concentration-related and either increased (RT and trial completions) or remained constant [P(correct)] across the 60-min test session. The PCE-induced reduction in accuracy was primarily due to an increase in false alarms, a pattern consistent with reduced attention to the signal. A repeat of the exposures resulted in smaller effects on these performance measures. Thus, like toluene and TCE, inhaled PCE acutely impaired sustained attention in rats, and its potency weakened upon repetition of the exposure.


Asunto(s)
Desempeño Psicomotor/efectos de los fármacos , Detección de Señal Psicológica/efectos de los fármacos , Solventes/administración & dosificación , Solventes/toxicidad , Tetracloroetileno/administración & dosificación , Tetracloroetileno/toxicidad , Percepción Visual/efectos de los fármacos , Administración por Inhalación , Animales , Condicionamiento Operante/efectos de los fármacos , Interpretación Estadística de Datos , Masculino , Estimulación Luminosa , Ratas , Ratas Long-Evans , Tiempo de Reacción/efectos de los fármacos
15.
Cardiovasc Toxicol ; 18(6): 569-578, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29943085

RESUMEN

The health effects of individual criteria air pollutants have been well investigated. However, little is known about the health effects of air pollutant mixtures that more realistically represent environmental exposures. The present study was designed to evaluate the cardiac effects of inhaled simulated smog atmospheres (SA) generated from the photochemistry of either gasoline and isoprene (SA-G) or isoprene (SA-Is) in mice. Four-month-old female mice were exposed for 4 h to filtered air (FA), SA-G, or SA-Is. Immediately and 20 h after exposure, cardiac responses were assessed with a Langendorff preparation using a protocol consisting of 20 min of global ischemia followed by 2 h of reperfusion. Cardiac function was measured by index of left-ventricular developed pressure (LVDP) and cardiac contractility (dP/dt) before ischemia. Pre-ischemic LVDP was lower in mice immediately after SA-Is exposure (52.2 ± 5.7 cm H2O compared to 83.9 ± 7.4 cm H2O after FA exposure; p = 0.008) and 20 h after SA-G exposure (54.0 ± 12.7 cm H2O compared to 79.3 ± 7.4 cm H2O after FA exposure; p = 0.047). Pre-ischemic left ventricular contraction dP/dtmax was lower in mice immediately after SA-Is exposure (2025 ± 169 cm H2O/sec compared to 3044 ± 219 cm H2O/sec after FA exposure; p < 0.05) and 20 h after SA-G exposure (1864 ± 328 cm H2O/sec compared to 2650 ± 258 cm H2O/sec after FA exposure; p = 0.05). In addition, SA-G reduced the coronary artery flow rate 20 h after exposure compared to the FA control. This study demonstrates that acute SA-G and SA-Is exposures decrease LVDP and cardiac contractility in mice, indicating that photochemically-altered atmospheres affect the cardiovascular system.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Butadienos/toxicidad , Gasolina/toxicidad , Hemiterpenos/toxicidad , Exposición por Inhalación/efectos adversos , Contracción Miocárdica/efectos de los fármacos , Esmog/efectos adversos , Disfunción Ventricular Izquierda/inducido químicamente , Función Ventricular Izquierda/efectos de los fármacos , Presión Ventricular/efectos de los fármacos , Animales , Cardiotoxicidad , Circulación Coronaria/efectos de los fármacos , Femenino , Preparación de Corazón Aislado , Ratones Endogámicos C57BL , Disfunción Ventricular Izquierda/fisiopatología
16.
Environ Health Perspect ; 126(1): 017011, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29373863

RESUMEN

BACKGROUND: The increasing size and frequency of wildland fires are leading to greater potential for cardiopulmonary disease and cancer in exposed populations; however, little is known about how the types of fuel and combustion phases affect these adverse outcomes. OBJECTIVES: We evaluated the mutagenicity and lung toxicity of particulate matter (PM) from flaming vs. smoldering phases of five biomass fuels, and compared results by equal mass or emission factors (EFs) derived from amount of fuel consumed. METHODS: A quartz-tube furnace coupled to a multistage cryotrap was employed to collect smoke condensate from flaming and smoldering combustion of red oak, peat, pine needles, pine, and eucalyptus. Samples were analyzed chemically and assessed for acute lung toxicity in mice and mutagenicity in Salmonella. RESULTS: The average combustion efficiency was 73 and 98% for the smoldering and flaming phases, respectively. On an equal mass basis, PM from eucalyptus and peat burned under flaming conditions induced significant lung toxicity potencies (neutrophil/mass of PM) compared to smoldering PM, whereas high levels of mutagenicity potencies were observed for flaming pine and peat PM compared to smoldering PM. When effects were adjusted for EF, the smoldering eucalyptus PM had the highest lung toxicity EF (neutrophil/mass of fuel burned), whereas smoldering pine and pine needles had the highest mutagenicity EF. These latter values were approximately 5, 10, and 30 times greater than those reported for open burning of agricultural plastic, woodburning cookstoves, and some municipal waste combustors, respectively. CONCLUSIONS: PM from different fuels and combustion phases have appreciable differences in lung toxic and mutagenic potency, and on a mass basis, flaming samples are more active, whereas smoldering samples have greater effect when EFs are taken into account. Knowledge of the differential toxicity of biomass emissions will contribute to more accurate hazard assessment of biomass smoke exposures. https://doi.org/10.1289/EHP2200.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Biomasa , Material Particulado/efectos adversos , Incendios Forestales , Contaminantes Atmosféricos/análisis , Animales , Exposición a Riesgos Ambientales/efectos adversos , Monitoreo del Ambiente/métodos , Femenino , Pulmón/patología , Ratones , Pruebas de Mutagenicidad/métodos , Material Particulado/análisis , Salmonella/genética , Humo/efectos adversos , Humo/análisis
17.
Neurotoxicol Teratol ; 29(2): 247-54, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17175136

RESUMEN

Previous work showed that trichloroethylene (TCE) impairs sustained attention as evidenced by a reduction in accuracy and elevation of response latencies in rats trained to perform a visual signal detection task (SDT). This work also showed that these effects abate during repeated exposures if rats inhale TCE while performing the SDT. The present experiment sought to determine whether toluene, another commonly-used solvent, would induce tolerance similarly if inhaled repeatedly during SDT testing. Sixteen male, Long-Evans rats were trained to perform the SDT. Upon completion of training, rats were divided into 2 groups. In Phase I, concentration-effect functions were determined for toluene (0, 1200, 1600, 2000, 2400 ppm) in both groups. Toluene reduced the proportion of correct responses [P(correct)], and increased response time (RT) and response failures. In Phase II, Group-Tol inhaled 1600 ppm toluene while Group-Air inhaled clean air during 11 daily SDT sessions. In Group-Tol the effect of toluene on P(correct) abated after 3 days, while RT remained elevated for the duration of the repeated exposures. In Phase III, toluene concentration-effect functions were re-determined for both groups. Group-Air remained impaired on all test measures, whereas for Group-Tol, toluene did not reduce P(correct), but continued to increase RT. These data confirm our previous hypothesis that animals can develop tolerance to chemical exposures that impair appetitively-motivated behaviors if that impairment leads to loss of reinforcement.


Asunto(s)
Condicionamiento Operante/efectos de los fármacos , Detección de Señal Psicológica/efectos de los fármacos , Solventes/farmacología , Tolueno/farmacología , Administración por Inhalación , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Tolerancia a Medicamentos , Masculino , Ratas , Ratas Long-Evans , Tiempo de Reacción/efectos de los fármacos
18.
Toxicol Res (Camb) ; 6(4): 448-459, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30090513

RESUMEN

VITROCELL® systems permit cell exposures at the air-liquid interface (ALI); however, there are inconsistent methodologies in the literature for their operation. Some studies find that exposure to air (vehicle control) induced cytotoxicity relative to incubator controls; others do not mention if any cytotoxicity was encountered. We sought to test whether temperature and relative humidity (temp/RH) influence cytotoxicity with an unmodified (conditions A & B) and modified (condition C) VITROCELL® 6 CF with temp/RH controls to permit conditioning of the sampled air-flow. We exposed BEAS-2B cells for 1 h to air and measured viability (WST-1 cell proliferation assay) and lactate dehydrogenase (LDH) release 6 h post-exposure. Relative to controls, cells exposed to air at (A) 22 °C and 18% RH had a 47.9% ± 3.2% (p < 0.0001) reduction in cell viability and 10.7% ± 2.0% (p < 0.0001) increase in LDH release (B) 22 °C and 55% RH had a 40.3% ± 5.8% (p < 0.0001) reduction in cell viability and 2.6% ± 2.0% (p = 0.2056) increase in LDH release, or (C) 37 °C and >75% RH showed no changes in cell viability and no increase in LDH release. Furthermore, cells exposed to air at 37 °C and >75% RH 24 h post-exposure showed no changes in viability or LDH release relative to incubator controls. Thus, reductions in cell viability were induced under conditions used typically in the literature (conditions A & B). However, our modifications (condition C) overcome this shortcoming by preventing cell desiccation; regulating temp/RH is essential for conducting adequate ALI exposures.

19.
Environ Pollut ; 218: 1180-1190, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27593352

RESUMEN

The Cleveland airshed comprises a complex mixture of industrial source emissions that contribute to periods of non-attainment for fine particulate matter (PM2.5) and are associated with increased adverse health outcomes in the exposed population. Specific PM sources responsible for health effects however are not fully understood. Size-fractionated PM (coarse, fine, and ultrafine) samples were collected using a ChemVol sampler at an urban site (G.T. Craig (GTC)) and rural site (Chippewa Lake (CLM)) from July 2009 to June 2010, and then chemically analyzed. The resulting speciated PM data were apportioned by EPA positive matrix factorization to identify emission sources for each size fraction and location. For comparisons with the ChemVol results, PM samples were also collected with sequential dichotomous and passive samplers, and evaluated for source contributions to each sampling site. The ChemVol results showed that annual average concentrations of PM, elemental carbon, and inorganic elements in the coarse fraction at GTC were ∼2, ∼7, and ∼3 times higher than those at CLM, respectively, while the smaller size fractions at both sites showed similar annual average concentrations. Seasonal variations of secondary aerosols (e.g., high NO3- level in winter and high SO42- level in summer) were observed at both sites. Source apportionment results demonstrated that the PM samples at GTC and CLM were enriched with local industrial sources (e.g., steel plant and coal-fired power plant) but their contributions were influenced by meteorological conditions and the emission source's operation conditions. Taken together the year-long PM collection and data analysis provides valuable insights into the characteristics and sources of PM impacting the Cleveland airshed in both the urban center and the rural upwind background locations. These data will be used to classify the PM samples for toxicology studies to determine which PM sources, species, and size fractions are of greatest health concern.


Asunto(s)
Contaminantes Atmosféricos/química , Monitoreo del Ambiente , Material Particulado/química , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Humanos , Industrias , Ohio , Material Particulado/análisis , Estaciones del Año
20.
Neurotoxicol Teratol ; 26(2): 239-51, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15019957

RESUMEN

Trichloroethylene (TCE) is an organic solvent with robust acute effects on the nervous system, but poorly documented long-term effects. This study employed a signal detection task (SDT) to assess the persistence of effects of repeated daily inhalation of TCE on sustained attention in rats. Adult male Long-Evans rats inhaled TCE at 0, 1600, or 2400 ppm, 6 h/day for 20 days (n=8/group) and began learning the SDT 3 weeks later. Rats earned food by pressing one retractable response lever in a signal trial and a second lever in a blank (no signal) trial. TCE did not affect acquisition of the response rule or performance of the SDT after the intertrial interval (ITI) was changed from a constant value to a variable one. Increasing the trial presentation rate reduced accuracy equivalently in all groups. Injections of ethanol (0, 0.5, 1.0, 1.5 g/kg ip) and d-amphetamine (0, 0.1, 0.3, 1.0 mg/kg sc) systematically impaired performance as functions of drug dose. d-Amphetamine (1.0 mg/kg) reduced P(hit) more in the 2400-ppm TCE group than in the other groups. All rats required remedial training to learn a reversal of the response contingencies, which TCE did not interfere with. Thus, a history of exposure to TCE did not significantly alter learning or sustained attention in the absence of drugs. Although ethanol did not differentially affect the TCE groups, the effect of d-amphetamine is consistent with solvent-induced changes in dopaminergic functions in the CNS. Calculations indicated power values of 0.5 to 0.8 to detect main effects of TCE for the three primary endpoints.


Asunto(s)
Anestésicos por Inhalación/toxicidad , Atención/efectos de los fármacos , Detección de Señal Psicológica/efectos de los fármacos , Tricloroetileno/toxicidad , Animales , Depresores del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Condicionamiento Operante/efectos de los fármacos , Dextroanfetamina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Etanol/farmacología , Masculino , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Long-Evans , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA