Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 40(1): e1800530, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30368953

RESUMEN

Chemical heterogeneity on biomaterial surfaces can transform its interfacial properties, rendering nanoscale heterogeneity profoundly consequential during bioadhesion. To examine the role played by chemical heterogeneity in the adsorption of viruses on synthetic surfaces, a range of novel coatings is developed wherein a tunable mixture of electrostatic tethers for viral binding, and carbohydrate brushes, bearing pendant α-mannose, ß-galactose, or ß-glucose groups, is incorporated. The effects of binding site density, brush composition, and brush architecture on viral adsorption, with the goal of formulating design specifications for virus-resistant coatings are experimentally evaluated. It is concluded that virus-coating interactions are shaped by the interplay between brush architecture and binding site density, after quantifying the adsorption of adenoviruses, influenza, and fibrinogen on a library of carbohydrate brushes co-immobilized with different ratios of binding sites. These insights will be of utility in guiding the design of polymer coatings in realistic settings where they will be populated with defects.


Asunto(s)
Adenoviridae/química , Carbohidratos/química , Fibrinógeno/química , Subtipo H1N1 del Virus de la Influenza A/química , Polímeros/química , Adsorción , Sitios de Unión , Estructura Molecular , Tamaño de la Partícula , Polímeros/síntesis química , Electricidad Estática , Propiedades de Superficie
2.
Biomacromolecules ; 18(10): 3089-3098, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28767236

RESUMEN

We report the chemical vapor deposition (CVD) of dual-functional polymer films for the specific and orthogonal immobilization of two biomolecules (notch ligand delta-like 1 (DLL1) and an RGD-peptide) that govern the fate of hematopoietic stem and progenitor cells. The composition of the CVD polymer and thus the biomolecule ratio can be tailored to investigate and optimize the influence of the relative surface concentrations of biomolecules on stem cell behavior. Prior to cell experiments, all surfaces were characterized by infrared reflection adsorption spectroscopy, time-of-flight secondary ion mass spectrometry, and X-ray photoelectron spectroscopy to confirm the presence of both biomolecules. In a proof-of-principle stem cell culture study, we show that all polymer surfaces are cytocompatible and that the proliferation of the hematopoietic stem and progenitor cells is predominantly influenced by the surface concentration of immobilized DLL1.


Asunto(s)
Materiales Biocompatibles/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Polímeros/farmacología , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Proliferación Celular , Células Cultivadas , Células Madre Hematopoyéticas/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Oligopéptidos/química , Polimerizacion , Polímeros/síntesis química , Polímeros/química , Volatilización
3.
Angew Chem Int Ed Engl ; 56(1): 203-207, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27900826

RESUMEN

Polymers prepared by chemical vapor deposition (CVD) polymerization have found broad acceptance in research and industrial applications. However, their intrinsic lack of degradability has limited wider applicability in many areas, such as biomedical devices or regenerative medicine. Herein, we demonstrate, for the first time, a backbone-degradable polymer directly synthesized via CVD. The CVD co-polymerization of [2.2]para-cyclophanes with cyclic ketene acetals, specifically 5,6-benzo-2-methylene-1,3-dioxepane (BMDO), results in well-defined, hydrolytically degradable polymers, as confirmed by FTIR spectroscopy and ellipsometry. The degradation kinetics are dependent on the ratio of ketene acetals to [2.2]para-cyclophanes as well as the hydrophobicity of the films. These coatings address an unmet need in the biomedical polymer field, as they provide access to a wide range of reactive polymer coatings that combine interfacial multifunctionality with degradability.


Asunto(s)
Acetales/química , Técnicas de Química Sintética/métodos , Éteres Cíclicos/química , Etilenos/química , Cetonas/química , Piperidinas/química , Polimerizacion , Polímeros/química , Acetales/síntesis química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Ciclización , Éteres Cíclicos/síntesis química , Etilenos/síntesis química , Cetonas/síntesis química , Oxepinas/síntesis química , Oxepinas/química , Piperidinas/síntesis química , Polímeros/síntesis química , Volatilización
4.
Org Biomol Chem ; 9(11): 4323-7, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21494703

RESUMEN

This paper focuses on readily accessible thiourea hydrogen bond catalysts derived from amino acids, whose steric and electronic features are modulated by their degree of substitution at the carbinol carbon center. These catalysts were applied in the asymmetric transfer hydrogenation of nitroolefins furnishing the chiral products in up to 99% yield and 86% enantiomeric excess. The proposed catalyst's mode of action is supported by mechanistic investigations.


Asunto(s)
Alquenos/síntesis química , Aminoácidos/química , Compuestos de Nitrógeno/síntesis química , Tiourea/química , Alquenos/química , Catálisis , Enlace de Hidrógeno , Hidrogenación , Conformación Molecular , Compuestos de Nitrógeno/química , Estereoisomerismo
5.
Sci Rep ; 9(1): 20003, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882795

RESUMEN

Large or complex bone fractures often need clinical treatments for sufficient bone repair. New treatment strategies have pursued the idea of using mesenchymal stromal cells (MSCs) in combination with osteoinductive materials to guide differentiation of MSCs into bone cells ensuring complete bone regeneration. To overcome the challenge of developing such materials, fundamental studies are needed to analyze and understand the MSC behavior on modified surfaces of applicable materials for bone healing. For this purpose, we developed a fibrous scaffold resembling the bone/bone marrow extracellular matrix (ECM) based on protein without addition of synthetic polymers. With this biomimetic in vitro model we identified the fibrous structure as well as the charge of the material to be responsible for its effects on MSC differentiation. Positive charge was introduced via cationization that additionally supported the stability of the scaffold in cell culture, and acted as nucleation point for mineralization during osteogenesis. Furthermore, we revealed enhanced focal adhesion formation and osteogenic differentiation of MSCs cultured on positively charged protein fibers. This pure protein-based and chemically modifiable, fibrous ECM model allows the investigation of MSC behavior on biomimetic materials to unfold new vistas how to direct cells' differentiation for the development of new bone regenerating strategies.


Asunto(s)
Diferenciación Celular , Electroquímica/métodos , Células Madre Mesenquimatosas/citología , Osteogénesis , Albúmina Sérica Bovina/química , Materiales Biomiméticos , Regeneración Ósea , Cationes , Humanos , Modelos Biológicos , Proteolisis , Electricidad Estática , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA