Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(42): e2414449121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39374385

RESUMEN

The extraction of gold (Au) from electronic waste (e-waste) has both environmental impact and inherent value. Improper e-waste disposal poses environmental and health risks, entailing substantial remediation and healthcare costs. Large efforts are applied for the recovery of Au from e-waste using complex processes which include the dissolution of Au, its adsorption in an ionic state and succeeding reduction to metallic Au. These processes themselves being complex and utilizing harsh chemicals contribute to the environmental impact of e-waste. Here, we present an approach for the simultaneous recovery and reduction of Au3+ and Au+ ions from e-waste to produce solid Au0 forms, thus skipping several technological steps. We develop a nanoscale cross-dimensional composite material via self-assembly of two-dimensional graphene oxide and one-dimensional chitosan macromolecules, capable of acting simultaneously as a scavenger of gold ions and as a reducing agent. Such multidimensional architecture doesn't require to apply any voltage for Au adsorption and reduction and solely relies on the chemisorption kinetics of Au ions in the heterogeneous GO/CS nanoconfinements and their chemical reduction on multiple binding sites. The cooperative phenomena in ionic absorption are responsible for the extremely high efficiency of gold extraction. The extraction capacity reaches 16.8 g/g for Au3+ and 6.2 g/g for Au+, which is ten times larger than any existing gold adsorbents can propose. The efficiency is above 99.5 wt.% (current limit is 75 wt.%) and extraction ability is down to very low concentrations of 3 ppm.

2.
Opt Express ; 32(10): 17922-17931, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858960

RESUMEN

Miniaturization of optical devices is a modern trend essential for optoelectronics, optical sensing, optical computing and other branches of science and technology. To satisfy this trend, optical materials with a small footprint are required. Here we show that extremely thin, flat, nanostructured gold films made of highly oriented single-crystalline gold quantum-dots can provide elements of topological photonics in visible light and be used as high-index dielectric materials in the infrared part of the spectra. We measure and theoretically confirm the presence of topological darkness and associated phase singularities in studied gold films of thickness of below 10 nm placed on MgO substrates in the red part of the spectrum. At telecom wavelengths, the fabricated gold metasurface behaves as a dielectric with the refractive index of n≈2.75 and the absorption coefficient of k≈0.005.

3.
Chemistry ; : e202403050, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39419759

RESUMEN

Metal-semiconductor metamaterials hold great promise for photocatalytic water splitting due to their excellent light harvesting in a broad spectral range as well as efficient charge carrier generation and transfer. In majority of such metamaterials, semiconductors are used to initiate the water splitting reaction, while their metal counterparts are employed to improve light harvesting through plasmonic effects. Here, we describe for the first time an exceptional reversed case of metal-semiconductor photocatalysts in which metals are used to initiate the water splitting reaction and semiconductors are employed to improve light harvesting through blackbody effect and serve as co-catalysts. The studied photoanodes are made of non-noble plasmonic MgB2 combined with transition metal dichalcogenides (TMDCs). The plasmonic resonances of the MgB2 component contribute to field confinement, plasmon-exciton coupling, and hot-electron transfer providing an enhancement of photoactivity in the entire solar spectrum capable of water splitting. The TMDC component provides impedance matching and enhances light absorption by the metal catalyst. We demonstrate seawater splitting with MgB2-TMDCs photoanodes attaining current densities of ~ 3 mA⋅cm-2 at solar radiation. The overall efficiency of hydrogen production in seawater splitting by sunlight with the help of the studied photoanodes is 3% at bias voltage of Vbias = 0.3 V.

4.
Chem Soc Rev ; 52(18): 6554-6585, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37681251

RESUMEN

Label-free optical biosensing holds great promise for a variety of applications in biomedical diagnostics, environmental and food safety, and security. It is already used as a key tool in the investigation of biomolecular binding events and reaction constants in real time and offers further potential additional functionalities and low-cost designs. However, the sensitivity of this technology does not match the routinely used but expensive and slow labelling methods. Therefore, label-free optical biosensing remains predominantly a research tool. Here we discuss how one can go beyond the limits of detection provided by standard optical biosensing platforms and achieve a sensitivity of label-free biosensing that is superior to labelling methods. To this end we review newly emerging optical implementations that overcome current sensitivity barriers by employing novel structural architectures, artificial materials (metamaterials and hetero-metastructures) and using phase of light as a sensing parameter. Furthermore, we elucidate the mechanism of plasmonic phase biosensing and review hyper-sensitive transducers, which can achieve detection limits at the single molecule level (less than 1 fg mm-2) and make it possible to detect analytes at several orders of magnitude lower concentrations than so far reported in literature. We finally discuss newly emerging layouts based on dielectric nanomaterials, bound states in continuum, and exceptional points.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras
5.
Nano Lett ; 19(7): 4678-4683, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31192613

RESUMEN

The ability of different materials to display self-limiting growth has recently attracted an enormous amount of attention because of the importance of nanoscale materials in applications for catalysis, energy conversion, (opto)electronics, and so forth. Here, we show that the electrochemical deposition of palladium (Pd) between graphene oxide (GO) sheets result in the self-limiting growth of 5-nm-thick Pd nanosheets. The self-limiting growth is found to be a consequence of the strong interaction of Pd with the confining GO sheets, which results in the bulk growth of Pd being energetically unfavorable for larger thicknesses. Furthermore, we have successfully carried out liquid exfoliation of the resulting Pd-GO laminates to isolate Pd nanosheets and have demonstrated their high efficiency in continuous flow catalysis and electrocatalysis.

6.
Nano Lett ; 19(9): 6475-6481, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31426634

RESUMEN

Most of the studied two-dimensional (2D) materials have been obtained by exfoliation of van der Waals crystals. Recently, there has been growing interest in fabricating synthetic 2D crystals which have no layered bulk analogues. These efforts have been focused mainly on the surface growth of molecules in high vacuum. Here, we report an approach to making 2D crystals of covalent solids by chemical conversion of van der Waals layers. As an example, we used 2D indium selenide (InSe) obtained by exfoliation and converted it by direct fluorination into indium fluoride (InF3), which has a nonlayered, rhombohedral structure and therefore cannot  possibly be obtained by exfoliation. The conversion of InSe into InF3 is found to be feasible for thicknesses down to three layers of InSe, and the obtained stable InF3 layers are doped with selenium. We study this new 2D material by optical, electron transport, and Raman measurements and show that it is a semiconductor with a direct bandgap of 2.2 eV, exhibiting high optical transparency across the visible and infrared spectral ranges. We also demonstrate the scalability of our approach by chemical conversion of large-area, thin InSe laminates obtained by liquid exfoliation, into InF3 films. The concept of chemical conversion of cleavable thin van der Waals crystals into covalently bonded noncleavable ones opens exciting prospects for synthesizing a wide variety of novel atomically thin covalent crystals.

7.
Nano Lett ; 15(5): 3519-23, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25859743

RESUMEN

We present extremely narrow collective plasmon resonances observed in gold nanostripe arrays fabricated on a thin gold film, with the spectral line full width at half-maximum (fwhm) as low as 5 nm and quality factors Q reaching 300, at important fiber-optic telecommunication wavelengths around 1.5 µm. Using these resonances, we demonstrate a hybrid graphene-plasmonic modulator with the modulation depth of 20% in reflection operated by gating of a single layer graphene, the largest measured so far.

8.
Adv Mater ; 36(7): e2309393, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37997481

RESUMEN

Strong coupling of molecules to vacuum fields is widely reported to lead to modified chemical properties such as reaction rates. However, some recent attempts to reproduce infrared strong coupling results have not been successful, suggesting that factors other than strong coupling may sometimes be involved. In the first vacuum-modified chemistry experiment, changes to a molecular photoisomerization process in the ultraviolet-visible spectral range are attributed to strong coupling of the molecules to visible light. Here, this process is re-examined, finding significant variations in photoisomerization rates consistent with the original work. However, there is no evidence that these changes need to be attributed to strong coupling. Instead, it is suggested that the photoisomerization rates involved are most strongly influenced by the absorption of ultraviolet radiation in the cavity. These results indicate that care must be taken to rule out non-polaritonic effects before invoking strong coupling to explain any changes of properties arising in cavity-based experiments.

9.
ACS Nano ; 18(33): 22034-22044, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39106126

RESUMEN

Ever since the ground-breaking isolation of graphene, numerous two-dimensional (2D) materials have emerged with 2D metal dihalides gaining significant attention due to their intriguing electrical and magnetic properties. In this study, we introduce an innovative approach via anhydrous solvent-induced recrystallization of bulk powders to obtain crystals of metal dihalides (MX2, with M = Cu, Ni, Co and X = Br, Cl, I), which can be exfoliated to 2D flakes. We demonstrate the effectiveness of our method using CuBr2 as an example, which forms large layered crystals. We investigate the structural properties of both the bulk and 2D CuBr2 using X-ray diffraction, along with Raman scattering and optical spectroscopy, revealing its quasi-1D chain structure, which translates to distinct emission and scattering characteristics. Furthermore, microultraviolet photoemission spectroscopy and electronic transport reveal the electronic properties of CuBr2 flakes, including their valence band structure. We extend our methodology to other metal halides and assess the stability of the metal halide flakes in controlled environments. We show that optical contrast can be used to characterize the flake thicknesses for these materials. Our findings demonstrate the versatility and potential applications of the proposed methodology for preparing and studying 2D metal halide flakes.

10.
ACS Photonics ; 10(10): 3715-3722, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37869553

RESUMEN

Topological darkness is a new phenomenon that guarantees zero reflection/transmission of light from an optical sample and hence provides topologically nontrivial phase singularities. Here we consider topological darkness in an optical heterostructure that consists of an (unknown) layer placed on a composite substrate and suggest an algorithm that can be used to predict and confirm the presence of topological darkness. The algorithm is based on a combination of optical measurements and the Fresnel equations. We apply this algorithm to ultrathin Pd films fabricated on a Si/SiO2/Cr substrate and extract four different points of topological darkness. Our results will be useful for topological photonics and label-free optical biosensing based on phase interrogation.

11.
ACS Nano ; 16(11): 18637-18647, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36351038

RESUMEN

Excitons (electron-hole pairs bound by the Coulomb potential) play an important role in optical and electronic properties of layered materials. They can be used to modulate light with high frequencies due to the optical Pauli blocking. The properties of excitons in 2D materials are extremely anisotropic. However, due to nanometre sizes of excitons and their short life times, reliable tools to study this anisotropy are lacking. Here, we show how direct optical reflection measurements can be used to evaluate anisotropy of excitons in transition metal dichalcogenides MoS2. Using focused beam spectroscopic ellipsometry, we have measured the polarized optical reflection of bulk MoS2 for two crystal orientations: c-axis being perpendicular to the surface from which reflection is measured and c-axis being parallel to the surface from which reflection is measured. We found that for the parallel configuration the optical reflection near excitonic transitions is strongly affected by the presence of the exciton "dead" layer such that the excitonic reflection peaks become the excitonic dips due to light interference. At the same time, the optical reflection for the perpendicular orientation is not significantly altered by the exciton "dead" layer due to large anisotropy of exciton properties. Performing simultaneous Fresnel fitting for both geometries, we were able to evaluate exciton anisotropy in layered materials from simple optical measurements.

12.
Small ; 6(24): 2877-84, 2010 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-21053339

RESUMEN

A stoichiometric derivative of graphene with a fluorine atom attached to each carbon is reported. Raman, optical, structural, micromechanical, and transport studies show that the material is qualitatively different from the known graphene-based nonstoichiometric derivatives. Fluorographene is a high-quality insulator (resistivity >10(12) Ω) with an optical gap of 3 eV. It inherits the mechanical strength of graphene, exhibiting a Young's modulus of 100 N m(-1) and sustaining strains of 15%. Fluorographene is inert and stable up to 400 °C even in air, similar to Teflon.


Asunto(s)
Grafito/química , Politetrafluoroetileno/química , Halogenación , Microscopía Electrónica de Transmisión , Espectrometría Raman
13.
Opt Express ; 18(10): 9780-90, 2010 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-20588828

RESUMEN

We study optical properties of optomagnetic metamaterials produced by regular arrays of double gold dots (nanopillars). Using combined data of spectroscopic ellipsometry, transmission and reflection measurements, we identify localized plasmon resonances of a nanopillar pair and measure their dependences on dot sizes. We formulate the necessary condition at which an effective field theory can be applied to describe optical properties of a composite medium and employ interferometry to measure phase shifts for our samples. A negative phase shift for transmitted green light coupled to an antisymmetric magnetic mode of a double-dot array is observed.


Asunto(s)
Oro/química , Modelos Químicos , Puntos Cuánticos , Resonancia por Plasmón de Superficie/métodos , Simulación por Computador , Campos Electromagnéticos , Oro/efectos de la radiación , Magnetismo
14.
Appl Opt ; 49(26): 5013-9, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20830193

RESUMEN

We report enhanced magneto-optical Kerr rotation in the layer systems of a magnetic granular film coated by uniform gold and dielectric films. The Kerr rotation spectra measured from 1.2 to 5 eV show a peak at about 2.7 eV, not present in either uncoated magnetic particle films. It was shown that the polar magneto-optical Kerr signal is about five times higher than that obtained for CoFe-MgO granular films in similar conditions. The physical nature of the magneto-optical effect enhancement in three layers (magnetic/noble/dielectric films) is related to the excitation of surface plasmons and their fast propagation on the interface of a complex three-layer structure. The Kerr rotation enhancement corresponds to intrinsic electronic transitions in the CoFe nanogranules due to the spectral overlap of these transitions with propagating surface plasmons.

15.
Biosens Bioelectron ; 104: 102-112, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29331424

RESUMEN

When excited over a periodic metamaterial lattice of gold nanoparticles (~ 100nm), localized plasmon resonances (LPR) can be coupled by a diffraction wave propagating along the array plane, which leads to a drastic narrowing of plasmon resonance lineshapes (down to a few nm full-width-at-half-maximum) and the generation of singularities of phase of reflected light. These phenomena look very promising for the improvement of performance of plasmonic biosensors, but conditions of implementation of such diffractively coupled plasmonic resonances, also referred to as plasmonic surface lattice resonances (PSLR), are not always compatible with biosensing arrangement implying the placement of the nanoparticles between a glass substrate and a sample medium (air, water). Here, we consider conditions of excitation and properties of PSLR over arrays of glass substrate-supported single and double Au nanoparticles (~ 100-200nm), arranged in a periodic metamaterial lattice, in direct and Attenuated Total Reflection (ATR) geometries, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. First, we identify medium (PSLRair, PSLRwat for air and water, respectively) and substrate (PSLRsub) modes corresponding to the coupling of individual plasmon oscillations at medium- and substrate-related diffraction cut-off edges. We show that spectral sensitivity of medium modes to RI variations is determined by the lattice periodicity in both direct and ATR geometries (~ 320nm per RIU change in our case), while substrate mode demonstrates much lower sensitivity. We also show that phase sensitivity of PSLR can exceed 105 degrees of phase shift per RIU change and thus outperform the relevant parameter for all other plasmonic sensor counterparts. We finally demonstrate the applicability of surface lattice resonances in plasmonic metamaterial arrays to biosensing using standard streptavidin-biotin affinity model. Combining advantages of nanoscale architectures, including drastic concentration of electric field, possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise the advancement of current state-of-the-art plasmonic biosensing technology toward single molecule label-free detection.


Asunto(s)
Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie/métodos , Biotina/química , Oro/química , Nanotecnología , Estreptavidina/química
16.
Nat Nanotechnol ; 13(4): 300-303, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29358638

RESUMEN

Graphene has recently been shown to be permeable to thermal protons 1 , the nuclei of hydrogen atoms, which sparked interest in its use as a proton-conducting membrane in relevant technologies1-4. However, the influence of light on proton permeation remains unknown. Here we report that proton transport through Pt-nanoparticle-decorated graphene can be enhanced strongly by illuminating it with visible light. Using electrical measurements and mass spectrometry, we find a photoresponsivity of ∼104 A W-1, which translates into a gain of ∼104 protons per photon with response times in the microsecond range. These characteristics are competitive with those of state-of-the-art photodetectors that are based on electron transport using silicon and novel two-dimensional materials5-7. The photo-proton effect could be important for graphene's envisaged use in fuel cells and hydrogen isotope separation. Our observations may also be of interest for other applications such as light-induced water splitting, photocatalysis and novel photodetectors.

17.
Adv Mater ; 29(19)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28295647

RESUMEN

The gate-tunable wide-band absorption of graphene makes it suitable for light modulation from terahertz to visible light. The realization of graphene-based modulators, however, faces challenges connected with graphene's low absorption and the high electric fields necessary to change graphene's optical conductivity. Here, a solid-state supercapacitor effect with the high-k dielectric hafnium oxide is demonstrated that allows modulation from the near-infrared to shorter wavelengths close to the visible spectrum with remarkably low voltages (≈3 V). The electroabsorption modulators are based on a Fabry-Perot-resonator geometry that allows modulation depths over 30% for free-space beams.

18.
Sci Rep ; 7: 45196, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28338060

RESUMEN

We propose a hybrid plasmonic device consisting of a planar dielectric waveguide covering a gold nanostripe array fabricated on a gold film and investigate its guiding properties at telecom wavelengths. The fundamental modes of a hybrid device and their dependence on the key geometric parameters are studied. A communication length of 250 µm was achieved for both the TM and TE guided modes at telecom wavelengths. Due to the difference between the TM and TE light propagation associated with the diffractive plasmon excitation, our waveguides provide polarization separation. Our results suggest a practical way of fabricating metal-nanostripes-dielectric waveguides that can be used as essential elements in optoelectronic circuits.

19.
Sci Rep ; 7(1): 2878, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28588234

RESUMEN

Plasmon-induced phenomena have recently attracted considerable attention. At the same time, relatively little research has been conducted on electrochemistry mediated by plasmon excitations. Here we report plasmon-induced formation of nanoscale quantized conductance filaments within metal-insulator-metal heterostructures. Plasmon-enhanced electromagnetic fields in an array of gold nanodots provide a straightforward means of forming conductive CrOx bridges across a thin native chromium oxide barrier between the nanodots and an underlying metallic Cr layer. The existence of these nanoscale conducting filaments is verified by transmission electron microscopy and contact resistance measurements. Their conductance was interrogated optically, revealing quantised relative transmission of light through the heterostructures across a wavelength range of 1-12 µm. Such plasmon-induced electrochemical processes open up new possibilities for the development of scalable devices governed by light.

20.
Adv Mater ; 26(2): 324-30, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24136734

RESUMEN

Self-assembled plasmonic metamaterials are fabricated from silver nanoparticles covered with a silica shell. These metamaterials demonstrate topological darkness or selective suppression of reflection connected to global properties of the Fresnel coefficients. The optical properties of the studied structures are in good agreement with effective medium theory. The results suggest a practical way of achieving high phase sensitivity in plasmonic metamaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA