Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 15(6): e1006619, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31206508

RESUMEN

Many complex diseases such as cancer are associated with multiple pathological manifestations. Moreover, the therapeutics for their treatments often lead to serious side effects. Thus, it is needed to develop multi-indication therapeutics that can simultaneously target multiple clinical indications of interest and mitigate the side effects. However, conventional one-drug-one-gene drug discovery paradigm and emerging polypharmacology approach rarely tackle the challenge of multi-indication drug design. For the first time, we propose a one-drug-multi-target-multi-indication strategy. We develop a novel structural systems pharmacology platform 3D-REMAP that uses ligand binding site comparison and protein-ligand docking to augment sparse chemical genomics data for the machine learning model of genome-scale chemical-protein interaction prediction. Experimentally validated predictions systematically show that 3D-REMAP outperforms state-of-the-art ligand-based, receptor-based, and machine learning methods alone. As a proof-of-concept, we utilize the concept of drug repurposing that is enabled by 3D-REMAP to design dual-indication anti-cancer therapy. The repurposed drug can demonstrate anti-cancer activity for cancers that do not have effective treatment as well as reduce the risk of heart failure that is associated with all types of existing anti-cancer therapies. We predict that levosimendan, a PDE inhibitor for heart failure, inhibits serine/threonine-protein kinase RIOK1 and other kinases. Subsequent experiments and systems biology analyses confirm this prediction, and suggest that levosimendan is active against multiple cancers, notably lymphoma, through the direct inhibition of RIOK1 and RNA processing pathway. We further develop machine learning models to predict cancer cell-line's and a patient's response to levosimendan. Our findings suggest that levosimendan can be a promising novel lead compound for the development of safe, effective, and precision multi-indication anti-cancer therapy. This study demonstrates the potential of structural systems pharmacology in designing polypharmacology for precision medicine. It may facilitate transforming the conventional one-drug-one-gene-one-disease drug discovery process and single-indication polypharmacology approach into a new one-drug-multi-target-multi-indication paradigm for complex diseases.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas/métodos , Farmacogenética/métodos , Inhibidores de Fosfodiesterasa , Medicina de Precisión/métodos , Biología Computacional , Humanos
2.
Nat Commun ; 14(1): 3168, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280220

RESUMEN

High throughput drug screening is an established approach to investigate tumor biology and identify therapeutic leads. Traditional platforms use two-dimensional cultures which do not accurately reflect the biology of human tumors. More clinically relevant model systems such as three-dimensional tumor organoids can be difficult to scale and screen. Manually seeded organoids coupled to destructive endpoint assays allow for the characterization of treatment response, but do not capture transitory changes and intra-sample heterogeneity underlying clinically observed resistance to therapy. We present a pipeline to generate bioprinted tumor organoids linked to label-free, time-resolved imaging via high-speed live cell interferometry (HSLCI) and machine learning-based quantitation of individual organoids. Bioprinting cells gives rise to 3D structures with unaltered tumor histology and gene expression profiles. HSLCI imaging in tandem with machine learning-based segmentation and classification tools enables accurate, label-free parallel mass measurements for thousands of organoids. We demonstrate that this strategy identifies organoids transiently or persistently sensitive or resistant to specific therapies, information that could be used to guide rapid therapy selection.


Asunto(s)
Bioimpresión , Neoplasias , Humanos , Evaluación Preclínica de Medicamentos/métodos , Organoides/metabolismo , Neoplasias/patología , Interferometría
3.
Sci Data ; 5: 180023, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29485625

RESUMEN

Biomedical data repositories such as the Gene Expression Omnibus (GEO) enable the search and discovery of relevant biomedical digital data objects. Similarly, resources such as OMICtools, index bioinformatics tools that can extract knowledge from these digital data objects. However, systematic access to pre-generated 'canned' analyses applied by bioinformatics tools to biomedical digital data objects is currently not available. Datasets2Tools is a repository indexing 31,473 canned bioinformatics analyses applied to 6,431 datasets. The Datasets2Tools repository also contains the indexing of 4,901 published bioinformatics software tools, and all the analyzed datasets. Datasets2Tools enables users to rapidly find datasets, tools, and canned analyses through an intuitive web interface, a Google Chrome extension, and an API. Furthermore, Datasets2Tools provides a platform for contributing canned analyses, datasets, and tools, as well as evaluating these digital objects according to their compliance with the findable, accessible, interoperable, and reusable (FAIR) principles. By incorporating community engagement, Datasets2Tools promotes sharing of digital resources to stimulate the extraction of knowledge from biomedical research data. Datasets2Tools is freely available from: http://amp.pharm.mssm.edu/datasets2tools.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA