Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Traffic ; 10(9): 1350-61, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19566896

RESUMEN

The apical surface of the terminally differentiated mouse bladder urothelium is largely covered by urothelial plaques, consisting of hexagonally packed 16-nm uroplakin particles. These plaques are delivered to the cell surface by fusiform vesicles (FVs) that are the most abundant cytoplasmic organelles. We have analyzed the functional involvement of several proteins in the apical delivery and endocytic degradation of uroplakin proteins. Although FVs have an acidified lumen and Rab27b, which localizes to these organelles, is known to be involved in the targeting of lysosome-related organelles (LROs), FVs are CD63 negative and are therefore not typical LROs. Vps33a is a Sec1-related protein that plays a role in vesicular transport to the lysosomal compartment. A point mutation in mouse Vps33a (Buff mouse) causes albinism and bleeding (Hermansky-Pudlak syndrome) because of abnormalities in the trafficking of melanosomes and platelets. These Buff mice showed a novel phenotype observed in urothelial umbrella cells, where the uroplakin-delivering FVs were almost completely replaced by Rab27b-negative multivesicular bodies (MVBs) involved in uroplakin degradation. MVB accumulation leads to an increase in the amounts of uroplakins, Lysosomal-associated membrane protein (LAMP)-1/2, and the activities of beta-hexosaminidase and beta-glucocerebrosidase. These results suggest that FVs can be regarded as specialized secretory granules that deliver crystalline arrays of uroplakins to the cell surface, and that the Vps33a mutation interferes with the fusion of MVBs with mature lysosomes thus blocking uroplakin degradation.


Asunto(s)
Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Cuerpos Multivesiculares/metabolismo , Vejiga Urinaria/metabolismo , Urotelio/metabolismo , Proteínas de Transporte Vesicular/fisiología , Animales , Western Blotting , Células Cultivadas , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía Inmunoelectrónica , Cuerpos Multivesiculares/ultraestructura , Mutación Puntual , Transporte de Proteínas , Vejiga Urinaria/enzimología , Vejiga Urinaria/ultraestructura , Uroplaquina II , Uroplaquina III , Urotelio/enzimología , Urotelio/ultraestructura , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo
2.
Kidney Int ; 75(11): 1153-1165, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19340092

RESUMEN

Urothelium covers the inner surfaces of the renal pelvis, ureter, bladder, and prostatic urethra. Although morphologically similar, the urothelia in these anatomic locations differ in their embryonic origin and lineages of cellular differentiation, as reflected in their different uroplakin content, expandability during micturition, and susceptibility to chemical carcinogens. Previously thought to be an inert tissue forming a passive barrier between the urine and blood, urothelia have recently been shown to have a secretory activity that actively modifies urine composition. Urothelial cells express a number of ion channels, receptors, and ligands, enabling them to receive and send signals and communicate with adjoining cells and their broader environment. The urothelial surface bears specific receptors that not only allow uropathogenic E. coli to attach to and invade the bladder mucosa, but also provide a route by which the bacteria ascend through the ureters to the kidney to cause pyelonephritis. Genetic ablation of one or more uroplakin genes in mice causes severe retrograde vesicoureteral reflux, hydronephrosis, and renal failure, conditions that mirror certain human congenital diseases. Clearly, abnormalities of the lower urinary tract can impact the upper tract, and vice versa, through the urothelial connection. In this review, we highlight recent advances in the field of urothelial biology by focusing on the uroplakins, a group of urothelium-specific and differentiation-dependent integral membrane proteins. We discuss these proteins' biochemistry, structure, assembly, intracellular trafficking, and their emerging roles in urothelial biology, function, and pathological processes. We also call attention to important areas where greater investigative efforts are warranted.


Asunto(s)
Glicoproteínas de Membrana/fisiología , Animales , Permeabilidad de la Membrana Celular , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Ratones , Multimerización de Proteína , Transporte de Proteínas , Tetraspaninas , Uroplaquina Ia , Urotelio/química
3.
J Cell Biol ; 158(3): 497-506, 2002 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-12163472

RESUMEN

In the ER, the translocon complex (TC) functions in the translocation and cotranslational modification of proteins made on membrane-bound ribosomes. The oligosaccharyltransferase (OST) complex is associated with the TC, and performs the cotranslational N-glycosylation of nascent polypeptide chains. Here we use a GFP-tagged subunit of the OST complex (GFP-Dad1) that rescues the temperature-sensitive (ts) phenotype of tsBN7 cells, where Dad1 is degraded and N-glycosylation is inhibited, to study the lateral mobility of the TC by FRAP. GFP-Dad1 that is functionally incorporated into TCs diffuses extremely slow, exhibiting an effective diffusion constant (Deff) about seven times lower than that of GFP-tagged ER membrane proteins unhindered in their lateral mobility. Termination of protein synthesis significantly increases the lateral mobility of GFP-Dad1 in the ER membranes, but to a level that is still lower than that of free GFP-Dad1. This suggests that GFP-Dad1 as part of the OST remains associated with inactive TCs. Our findings that TCs assembled into membrane-bound polysomes diffuse slowly within the ER have mechanistic implications for the segregation of the ER into smooth and rough domains.


Asunto(s)
Retículo Endoplásmico/metabolismo , Células Eucariotas/metabolismo , Hexosiltransferasas , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas/fisiología , Transporte de Proteínas/fisiología , Animales , Células Cultivadas , Células Clonales/metabolismo , Clonación Molecular , Cricetinae , Difusión , Retículo Endoplásmico/ultraestructura , Células Eucariotas/ultraestructura , Regulación de la Expresión Génica/fisiología , Glicosilación , Proteínas Fluorescentes Verdes , Indicadores y Reactivos , Membranas Intracelulares/ultraestructura , Proteínas Luminiscentes , Sustancias Macromoleculares , Proteínas de la Membrana/genética , Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Canales de Translocación SEC , Factores de Tiempo , Transferasas/genética , Transferasas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
J Cell Biol ; 161(4): 715-25, 2003 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-12756234

RESUMEN

In eukaryotic cells, polypeptides are N glycosylated after passing through the membrane of the ER into the ER lumen. This modification is effected cotranslationally by the multimeric oligosaccharyltransferase (OST) enzyme. Here, we report the first cross-linking of an OST subunit to a nascent chain that is undergoing translocation through, or integration into, the ER membrane. A photoreactive probe was incorporated into a nascent chain using a modified Lys-tRNA and was positioned in a cryptic glycosylation site (-Q-K-T- instead of -N-K-T-) in the nascent chain. When translocation intermediates with nascent chains of increasing length were irradiated, nascent chain photocross-linking to translocon components, Sec61alpha and TRAM, was replaced by efficient photocross-linking solely to a protein identified by immunoprecipitation as the STT3 subunit of the OST. No cross-linking was observed in the absence of a cryptic sequence or in the presence of a competitive peptide substrate of the OST. As no significant nascent chain photocross-linking to other OST subunits was detected in these fully assembled translocation and integration intermediates, our results strongly indicate that the nascent chain portion of the OST active site is located in STT3.


Asunto(s)
Hexosiltransferasas , Proteínas de la Membrana/metabolismo , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Transferasas/química , Transferasas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/efectos de la radiación , Retículo Endoplásmico/enzimología , Luz , Proteínas de la Membrana/biosíntesis , Peso Molecular , Unión Proteica/efectos de la radiación , Ribosomas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Especificidad por Sustrato
5.
J Cell Biol ; 159(4): 685-94, 2002 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-12446744

RESUMEN

Urothelial plaques consist of four major uroplakins (Ia, Ib, II, and III) that form two-dimensional crystals covering the apical surface of urothelium, and provide unique opportunities for studying membrane protein assembly. Here, we describe a novel 35-kD urothelial plaque-associated glycoprotein that is closely related to uroplakin III: they have a similar overall type 1 transmembrane topology; their amino acid sequences are 34% identical; they share an extracellular juxtamembrane stretch of 19 amino acids; their exit from the ER requires their forming a heterodimer with uroplakin Ib, but not with any other uroplakins; and UPIII-knockout leads to p35 up-regulation, possibly as a compensatory mechanism. Interestingly, p35 contains a stretch of 80 amino acid residues homologous to a hypothetical human DNA mismatch repair enzyme-related protein. Human p35 gene is mapped to chromosome 7q11.23 near the telomeric duplicated region of Williams-Beuren syndrome, a developmental disorder affecting multiple organs including the urinary tract. These results indicate that p35 (uroplakin IIIb) is a urothelial differentiation product structurally and functionally related to uroplakin III, and that p35-UPIb interaction in the ER is an important early step in urothelial plaque assembly.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Urotelio/crecimiento & desarrollo , Urotelio/metabolismo , Secuencia de Aminoácidos , Animales , Biomarcadores , Bovinos , Células Cultivadas , Cromosomas Humanos Par 7 , Dimerización , Regulación del Desarrollo de la Expresión Génica , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Alineación de Secuencia , Tetraspaninas , Distribución Tisular , Uroplaquina III , Uroplaquina Ib , Urotelio/citología
6.
Biochem J ; 414(2): 195-203, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18481938

RESUMEN

The apical surface of the mammalian urothelium is almost completely covered by two-dimensional protein crystals (known as urothelial plaques) of hexagonally packed 16 nm particles consisting of two UP (uroplakin) heterodimers, i.e. UPs Ia/II and Ib/III pairs. UPs are functionally important as they contribute to the urothelial permeability barrier function, and UPIa may serve as the receptor for the uropathogenic Escherichia coli that causes over 90% of urinary tract infections. We study here how the UP proteins are assembled and targeted to the urothelial apical surface, paying special attention to the roles of the prosequence of UPII in UP oligomerization. We show that (i) the formation of the UPIa/UPII heterodimer, necessary for ER (endoplasmic reticulum) exit, requires disulfide formation in the prosequence domain of proUPII (the immature form of UPII still containing its prosequence); (ii) differentiation-dependent N-glycosylation of the prosequence leads to UP stabilization; (iii) a failure to form tetramers in cultured urothelial cells, in part due to altered glycosylation of the prosequence, may block two-dimensional crystal formation; and (iv) the prosequence of UPII remains attached to the mature protein complex on the urothelial apical surface even after it has been cleaved by the trans-Golgi-network-associated furin. Our results indicate that proper secondary modifications of the prosequence of UPII play important roles in regulating the oligomerization and function of the UP protein complex.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Células COS , Bovinos , Células Cultivadas , Chlorocebus aethiops , Dimerización , Glicosilación , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica , Procesamiento Proteico-Postraduccional , Uroplaquina II , Urotelio/citología , Urotelio/metabolismo
7.
Mol Biol Cell ; 16(9): 3937-50, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15958488

RESUMEN

The apical surface of mammalian urothelium is covered by 16-nm protein particles packed hexagonally to form 2D crystals of asymmetric unit membranes (AUM) that contribute to the remarkable permeability barrier function of the urinary bladder. We have shown previously that bovine AUMs contain four major integral membrane proteins, i.e., uroplakins Ia, Ib, II, and IIIa, and that UPIa and Ib (both tetraspanins) form heterodimers with UPII and IIIa, respectively. Using a panel of antibodies recognizing different conformational states of uroplakins, we demonstrate that the UPIa-dependent, furin-mediated cleavage of the prosequence of UPII leads to global conformational changes in mature UPII and that UPIb also induces conformational changes in its partner UPIIIa. We further demonstrate that tetraspanins CD9, CD81, and CD82 can stabilize their partner protein CD4. These results indicate that tetraspanin uroplakins, and some other tetraspanin proteins, can induce conformational changes leading to the ER-exit, stabilization, and cell surface expression of their associated, single-transmembrane-domained partner proteins and thus can function as "maturation-facilitators." We propose a model of AUM assembly in which conformational changes in integral membrane proteins induced by uroplakin interactions, differentiation-dependent glycosylation, and the removal of the prosequence of UPII play roles in regulating the assembly of uroplakins to form AUM.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Urotelio/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Bovinos , Diferenciación Celular/fisiología , Células Cultivadas , Dimerización , Glicosilación , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/inmunología , Datos de Secuencia Molecular , Precursores de Proteínas/inmunología , Precursores de Proteínas/metabolismo , Transporte de Proteínas/fisiología , Uroplaquina II , Uroplaquina III , Urotelio/citología , Urotelio/fisiología
8.
Mol Biol Cell ; 13(12): 4221-30, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12475947

RESUMEN

Much of the lower urinary tract, including the bladder, is lined by a stratified urothelium forming a highly differentiated, superficial umbrella cell layer. The apical plasma membrane as well as abundant cytoplasmic fusiform vesicles of the umbrella cells is covered by two-dimensional crystals that are formed by four membrane proteins named uroplakins (UPs) Ia, Ib, II, and III. UPs are synthesized on membrane-bound polysomes, and after several co- and posttranslational modifications they assemble into planar crystals in a post-Golgi vesicular compartment. Distension of the bladder may cause fusiform vesicles to fuse with the apical plasma membrane. We have investigated the early stages of uroplakin assembly by expressing the four uroplakins in 293T cells. Transfection experiments showed that, when expressed individually, only UPIb can exit from the endoplasmic reticulum (ER) and move to the plasma membrane, whereas UPII and UPIII reach the plasma membrane only when they form heterodimeric complexes with UPIa and UPIb, respectively. Heterodimer formation in the ER was confirmed by pulse-chase experiment followed by coimmunoprecipitation. Our results indicate that the initial building blocks for the assembly of crystalline uroplakin plaques are heterodimeric uroplakin complexes that form in the ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Western Blotting , Bovinos , Línea Celular , Membrana Celular/metabolismo , ADN Complementario/metabolismo , Dimerización , Electroforesis en Gel de Poliacrilamida , Glicósido Hidrolasas/metabolismo , Humanos , Polirribosomas/metabolismo , Pruebas de Precipitina , Unión Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Factores de Tiempo , Transfección , Uroplaquina II , Uroplaquina III , Uroplaquina Ia , Uroplaquina Ib
9.
Mol Biol Cell ; 27(10): 1621-34, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27009205

RESUMEN

Uroplakins (UPs) are major differentiation products of urothelial umbrella cells and play important roles in forming the permeability barrier and in the expansion/stabilization of the apical membrane. Further, UPIa serves as a uropathogenic Escherichia coli receptor. Although it is understood that UPs are delivered to the apical membrane via fusiform vesicles (FVs), the mechanisms that regulate this exocytic pathway remain poorly understood. Immunomicroscopy of normal and mutant mouse urothelia show that the UP-delivering FVs contained Rab8/11 and Rab27b/Slac2-a, which mediate apical transport along actin filaments. Subsequently a Rab27b/Slp2-a complex mediated FV-membrane anchorage before SNARE-mediated and MAL-facilitated apical fusion. We also show that keratin 20 (K20), which forms a chicken-wire network ∼200 nm below the apical membrane and has hole sizes allowing FV passage, defines a subapical compartment containing FVs primed and strategically located for fusion. Finally, we show that Rab8/11 and Rab27b function in the same pathway, Rab27b knockout leads to uroplakin and Slp2-a destabilization, and Rab27b works upstream from MAL. These data support a unifying model in which UP cargoes are targeted for apical insertion via sequential interactions with Rabs and their effectors, SNAREs and MAL, and in which K20 plays a key role in regulating vesicular trafficking.


Asunto(s)
Queratina-20/metabolismo , Proteínas con Dominio MARVEL/metabolismo , Proteínas SNARE/metabolismo , Urotelio/citología , Urotelio/metabolismo , Animales , Diferenciación Celular/fisiología , Membrana Celular/metabolismo , Células Cultivadas , Células Epiteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Liso/metabolismo , Transporte de Proteínas , Uroplaquinas/genética , Uroplaquinas/metabolismo , Proteínas de Unión al GTP rab/metabolismo
10.
Eur J Cell Biol ; 84(2-3): 393-405, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15819416

RESUMEN

Urothelial umbrella cells are characterized by apical, rigid membrane plaques, which contain four major uroplakin proteins (UP Ia, Ib, II and III) forming UPIa/UPII and UPIb/UPIII pairs. These integral membrane proteins are thought to play an important role in maintaining the physical integrity and the permeability barrier function of the urothelium. We asked whether the four uroplakins always coexpress in the entire human lower urinary tract. We stained immunohistochemically (ABC-peroxidase method) paraffin sections of normal human ureter (n = 18) and urinary bladder (n = 10) using rabbit antibodies against UPIa, UPIb, UPII and UPIII; a recently raised mouse monoclonal antibody (MAb), AU1, and two new MAbs, AU2 and AU3, all against UPIII; and mouse MAbs against umbrella cell-associated cytokeratins CK18 and CK20. Immunoblotting showed that AU1, AU2 and AU3 antibodies all recognized the N-terminal extracellular domain of bovine UPIII. By immunohistochemistry, we found that in 15/18 cases of human ureter, but in only 2/10 cases of bladder, groups of normal-looking, CK18-positive umbrella cells lacked both UPIII and UPIb immunostaining. The UPIb/UPIII-negative cells showed either normal or reduced amounts of UPIa and UPII staining. These data were confirmed by double immunofluorescence microscopy. The distribution of the UPIb/UPIII-negative umbrella cells was not correlated with localized urothelial proliferation (Ki-67 staining) or with the distribution pattern of CK20. Similar heterogeneities were observed in bovine but not in mouse ureter. We provide the first evidence that urothelial umbrella cells are heterogeneous as some normal-looking umbrella cells can possess only one, instead of two, uroplakin pairs. This heterogeneity seems more prominent in the urothelium of human ureter than that of bladder. This finding may indicate that ureter urothelium is intrinsically different from bladder urothelium. Alternatively, a single lineage of urothelium may exhibit different phenotypes resulting from extrinsic modulations due to distinct mesenchymal influence and different degrees of pressure and stretch in bladder versus ureter. Additional studies are needed to distinguish these two possibilities and to elucidate the physiological and pathological significance of the observed urothelial and uroplakin heterogeneity.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Uréter/metabolismo , Vejiga Urinaria/metabolismo , Animales , Anticuerpos Monoclonales , Bovinos , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Ratones , Ratas , Uréter/citología , Uroplaquina III , Urotelio/citología , Urotelio/metabolismo
11.
Endocrinology ; 146(10): 4234-49, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15947003

RESUMEN

Steroid-secreting cells are characterized by abundant smooth endoplasmic reticulum whose membranes contain many enzymes involved in sterol and steroid synthesis. Yet they have relatively little morphologically identifiable rough endoplasmic reticulum, presumably required for synthesis and maintenance of the smooth membranes. In this study, we demonstrate that adrenal smooth microsomal subfractions enriched in smooth endoplasmic reticulum membranes contain high levels of translocation apparatus and oligosaccharyltransferase complex proteins, previously thought confined to rough endoplasmic reticulum. We further demonstrate that these smooth microsomal subfractions are capable of effecting cotranslational translocation, signal peptide cleavage, and N-glycosylation of newly synthesized polypeptides. This shifts the paradigm for distinction between smooth and rough endoplasmic reticulum. Confocal microscopy revealed the proteins to be distributed throughout the abundant tubular endoplasmic reticulum in these cells, which is predominantly smooth surfaced. We hypothesize that the broadly distributed translocon and oligosaccharyltransferase proteins participate in local synthesis and/or quality control of membrane proteins involved in cholesterol and steroid metabolism in a sterol-dependent and hormonally regulated manner.


Asunto(s)
Corticoesteroides/biosíntesis , Corteza Suprarrenal/citología , Colesterol/biosíntesis , Retículo Endoplásmico/metabolismo , Corticoesteroides/metabolismo , Animales , Transporte Biológico , Fraccionamiento Celular , Colesterol/metabolismo , Cobayas , Membranas Intracelulares/metabolismo , Microsomas/metabolismo , Especificidad de Órganos , Ratas , Ratas Sprague-Dawley , Ribosomas/metabolismo
12.
J Invest Dermatol ; 118(6): 933-40, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12060386

RESUMEN

The movement of melanosomes from post-Golgi compartments to the periphery of melanocytes is known to be regulated by factors including myosin Va and at least one Rab protein, Rab27a. Mutations in the genes encoding either protein in the mouse result in a hypopigmented phenotype mimicking the human disease Griscelli syndrome. Rab27b and Rab27a share 72% identity and they belong to the same melanocyte/platelet subfamily of Rab proteins. Rab27a orchestrates the transport of melanosomes by recruitment of the actin motor, myosin Va, onto melanosomes. By contrast, the function of Rab27b has remained elusive. In this study, we found that Rab27b mRNA is present in melanocytes and demonstrated the intrinsic GTPase activity of Rab27b protein. We explored the function of Rab27b by overexpression of two dominant negative mutants as well as the wild-type Rab27b in melan-a melanocytes. Green-fluorescent-protein-tagged Rab27b colocalizes with the melanosome marker tyrosinase-related protein 1 and with myosin Va at the cell periphery, whereas Rab27b mutants do not decorate melanosomes, and melanosomes in these mutant transfected cells redistribute from cell periphery to the perinuclear region. Furthermore, transient overexpression of the dominant negative forms of Rab27b caused diminution in both numbers and length of dendrites of melan-a cells. Our results suggest that Rab27b may regulate the outward movement of melanosomes and the formation or maintenance of dendritic extensions in melanocytes.


Asunto(s)
Melanocitos/fisiología , Melanosomas/fisiología , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Animales , Transporte Biológico/fisiología , Núcleo Celular/metabolismo , Células Cultivadas , Dendritas/química , Dendritas/metabolismo , GTP Fosfohidrolasas/metabolismo , Expresión Génica/fisiología , Guanosina Trifosfato/metabolismo , Melanocitos/química , Melanocitos/ultraestructura , Melanosomas/química , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida/fisiología , Mutación Puntual/fisiología , ARN Mensajero/análisis , Proteínas de Unión al GTP rab/análisis , Proteínas rab27 de Unión a GTP
13.
PLoS One ; 9(6): e99644, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24914955

RESUMEN

Uroplakins (UP), a group of integral membrane proteins, are major urothelial differentiation products that form 2D crystals of 16-nm particles (urothelial plaques) covering the apical surface of mammalian bladder urothelium. They contribute to the urothelial barrier function and, one of them, UPIa, serves as the receptor for uropathogenic Escherichia coli. It is therefore important to understand the mechanism by which these surface-associated uroplakins are degraded. While it is known that endocytosed uroplakin plaques are targeted to and line the multivesicular bodies (MVBs), it is unclear how these rigid-looking plaques can go to the highly curved membranes of intraluminal vesicles (ILVs). From a cDNA subtraction library, we identified a highly urothelium-specific sorting nexin, SNX31. SNX31 is expressed, like uroplakins, in terminally differentiated urothelial umbrella cells where it is predominantly associated with MVBs. Apical membrane proteins including uroplakins that are surface biotin-tagged are endocytosed and targeted to the SNX31-positive MVBs. EM localization demonstrated that SNX31 and uroplakins are both associated not only with the limiting membranes of MVBs containing uroplakin plaques, but also with ILVs. SNX31 can bind, on one hand, the PtdIns3P-enriched lipids via its N-terminal PX-domain, and, on the other hand, it binds uroplakins as demonstrated by co-immunoprecipitation and proximity ligation assay, and by its reduced membrane association in uroplakin II-deficient urothelium. The fact that in urothelial umbrella cells MVBs are the only major intracellular organelles enriched in both PtdIns3P and uroplakins may explain SNX31's MVB-specificity in these cells. However, in MDCK and other cultured cells transfected SNX31 can bind to early endosomes possibly via lipids. These data support a model in which SNX31 mediates the endocytic degradation of uroplakins by disassembling/collapsing the MVB-associated uroplakin plaques, thus enabling the uroplakin-containing (but 'softened') membranes to bud and form the ILVs for lysosomal degradation and/or exosome formation.


Asunto(s)
Diferenciación Celular , Cuerpos Multivesiculares/metabolismo , Nexinas de Clasificación/metabolismo , Uroplaquinas/metabolismo , Urotelio/citología , Urotelio/metabolismo , Animales , Biomarcadores/metabolismo , Bovinos , Membrana Celular/metabolismo , Perros , Endocitosis , Endosomas/metabolismo , Técnicas de Inactivación de Genes , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL , Modelos Biológicos , Cuerpos Multivesiculares/ultraestructura , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Ultracentrifugación , Urotelio/enzimología , Urotelio/ultraestructura
14.
Mol Biol Cell ; 23(7): 1354-66, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22323295

RESUMEN

The apical surface of mammalian bladder urothelium is covered by large (500-1000 nm) two-dimensional (2D) crystals of hexagonally packed 16-nm uroplakin particles (urothelial plaques), which play a role in permeability barrier function and uropathogenic bacterial binding. How the uroplakin proteins are delivered to the luminal surface is unknown. We show here that myelin-and-lymphocyte protein (MAL), a 17-kDa tetraspan protein suggested to be important for the apical sorting of membrane proteins, is coexpressed with uroplakins in differentiated urothelial cell layers. MAL depletion in Madin-Darby canine kidney cells did not affect, however, the apical sorting of uroplakins, but it decreased the rate by which uroplakins were inserted into the apical surface. Moreover, MAL knockout in vivo led to the accumulation of fusiform vesicles in mouse urothelial superficial umbrella cells, whereas MAL transgenic overexpression in vivo led to enhanced exocytosis and compensatory endocytosis, resulting in the accumulation of the uroplakin-degrading multivesicular bodies. Finally, although MAL and uroplakins cofloat in detergent-resistant raft fractions, they are associated with distinct plaque and hinge membrane subdomains, respectively. These data suggest a model in which 1) MAL does not play a role in the apical sorting of uroplakins; 2) the propensity of uroplakins to polymerize forming 16-nm particles and later large 2D crystals that behave as detergent-resistant (giant) rafts may drive their apical targeting; 3) the exclusion of MAL from the expanding 2D crystals of uroplakins explains the selective association of MAL with the hinge areas in the uroplakin-delivering fusiform vesicles, as well as at the apical surface; and 4) the hinge-associated MAL may play a role in facilitating the incorporation of the exocytic uroplakin vesicles into the corresponding hinge areas of the urothelial apical surface.


Asunto(s)
Exocitosis/fisiología , Proteínas de Transporte de Membrana/metabolismo , Proteínas de la Mielina/metabolismo , Proteolípidos/metabolismo , Uroplaquinas/metabolismo , Urotelio/citología , Urotelio/metabolismo , Animales , Secuencia de Bases , Línea Celular , Membrana Celular/metabolismo , Perros , Células Epiteliales/metabolismo , Técnicas de Silenciamiento del Gen , Microdominios de Membrana/metabolismo , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Inmunoelectrónica , Modelos Biológicos , Proteínas de la Mielina/antagonistas & inhibidores , Proteínas de la Mielina/deficiencia , Proteínas de la Mielina/genética , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito , Transporte de Proteínas , Proteolípidos/antagonistas & inhibidores , Proteolípidos/deficiencia , Proteolípidos/genética , ARN Interferente Pequeño/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Uroplaquinas/deficiencia , Uroplaquinas/genética
15.
J Cell Sci ; 120(Pt 13): 2248-58, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17567679

RESUMEN

Microtubules are frequently seen in close proximity to membranes of the endoplasmic reticulum (ER), and the membrane protein CLIMP-63 is thought to mediate specific interaction between these two structures. It was, therefore, of interest to investigate whether these microtubules are in fact responsible for the highly restricted lateral mobility of the translocon complexes in M3/18 cells as described before. As determined by fluorescence recovery after photobleaching, the breakdown of microtubules caused by drug treatment or by overexpression of the microtubule-severing protein spastin, resulted in an increased lateral mobility of the translocons that are assembled into polysomes. Also, the expression of a CLIMP-63 mutant lacking the microtubule-binding domain resulted in a significant increase of the lateral mobility of the translocon complexes. The most striking increase in the diffusion rate of the translocon complexes was observed in M3/18 cells transfected with a siRNA that effectively knocked down the expression of the endogenous CLIMP-63. It appears, therefore, that interaction of microtubules with the ER results in the immobilization of translocon complexes that are part of membrane-bound polysomes, and may play a role in the mechanism that segregates the rough and smooth domains of the ER.


Asunto(s)
Adenosina Trifosfatasas/biosíntesis , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Adenosina Trifosfatasas/genética , Animales , Transporte Biológico/genética , Células COS , Chlorocebus aethiops , Retículo Endoplásmico/genética , Expresión Génica , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Microtúbulos/genética , Mutación , Polirribosomas/genética , Polirribosomas/metabolismo , Estructura Terciaria de Proteína/genética , ARN Interferente Pequeño/genética , Espastina
16.
J Cell Sci ; 119(Pt 24): 5077-86, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17158912

RESUMEN

The surface of the mammalian urinary bladder is covered by a crystalline, asymmetric unit membrane (AUM) structure that contains the four major uroplakins (UPs): Ia, Ib, II and IIIa. UPIa and UPIb belong to the family of tetraspanins. Although UPIa and UPIb are structurally conserved, only UPIb could exit from the endoplasmic reticulum (ER) and reach the cell surface when expressed alone in 293T cells. Modifications of the large extracellular loop of UPIb, such as mutation of the N-glycosylation site or the cysteines involved in the formation of three disulfide bridges, or exchanging the large luminal loop of UPIb with that of UPIa did not affect the ability of UPIb to reach the cell surface. However, modifications of any of the four transmembrane domains of UPIb led to ER retention, suggesting that the proper formation of helical bundles consisting of the tetraspanin transmembrane domains is a prerequisite for UPIb to exit from the ER. Results of sedimentation analysis suggested that aggregate formation is a mechanism for ER retention.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Western Blotting , Células COS , Línea Celular , Chlorocebus aethiops , Electroforesis en Gel de Poliacrilamida , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiología , Microscopía Fluorescente , Modelos Biológicos , Datos de Secuencia Molecular , Transporte de Proteínas/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
17.
Cell ; 126(4): 727-39, 2006 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-16923392

RESUMEN

The ER's capacity to process proteins is limited, and stress caused by accumulation of unfolded and misfolded proteins (ER stress) contributes to human disease. ER stress elicits the unfolded protein response (UPR), whose components attenuate protein synthesis, increase folding capacity, and enhance misfolded protein degradation. Here, we report that P58(IPK)/DNAJC3, a UPR-responsive gene previously implicated in translational control, encodes a cytosolic cochaperone that associates with the ER protein translocation channel Sec61. P58(IPK) recruits HSP70 chaperones to the cytosolic face of Sec61 and can be crosslinked to proteins entering the ER that are delayed at the translocon. Proteasome-mediated cytosolic degradation of translocating proteins delayed at Sec61 is cochaperone dependent. In P58(IPK-/-) mice, cells with a high secretory burden are markedly compromised in their ability to cope with ER stress. Thus, P58(IPK) is a key mediator of cotranslocational ER protein degradation, and this process likely contributes to ER homeostasis in stressed cells.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Animales , Glucemia/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Células Cultivadas , Diabetes Mellitus/metabolismo , Femenino , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Chaperonas Moleculares/metabolismo , Páncreas/metabolismo , Páncreas/patología , Canales de Translocación SEC , Molécula 1 de Adhesión Celular Vascular/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
18.
J Biol Chem ; 280(10): 9439-49, 2005 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-15623521

RESUMEN

Neurons are polarized cells presenting two distinct compartments, dendrites and an axon. Dendrites can be distinguished from the axon by the presence of rough endoplasmic reticulum (RER). The mechanism by which the structure and distribution of the RER is maintained in these cells is poorly understood. In the present study, we investigated the role of the dendritic microtubule-associated protein-2 (MAP2) in the RER membrane positioning by comparing their distribution in brain subcellular fractions and in primary hippocampal cells and by examining the MAP2-microtubule interaction with RER membranes in vitro. Subcellular fractionation of rat brain revealed a high MAP2 content in a subfraction enriched with the endoplasmic reticulum markers ribophorin and p63. Electron microscope morphometry confirmed the enrichment of this subfraction with RER membranes. In cultured hippocampal neurons, MAP2 and p63 were found to concomitantly compartmentalize to the dendritic processes during neuronal differentiation. Protein blot overlays using purified MAP2c protein revealed its interaction with p63, and immunoprecipitation experiments performed in HeLa cells showed that this interaction involves the projection domain of MAP2. In an in vitro reconstitution assay, MAP2-containing microtubules were observed to bind to RER membranes in contrast to microtubules containing tau, the axonal MAP. This binding of MAP2c microtubules was reduced when an anti-p63 antibody was added to the assay. The present results suggest that MAP2 is involved in the association of RER membranes with microtubules and thereby could participate in the differential distribution of RER membranes within a neuron.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Factores de Transcripción/metabolismo , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Bovinos , Línea Celular , Embrión de Mamíferos , Embrión no Mamífero , Retículo Endoplásmico/fisiología , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Hipocampo/fisiología , Membranas Intracelulares/metabolismo , Microscopía Electrónica , Microsomas/metabolismo , Microsomas/ultraestructura , Microtúbulos/ultraestructura , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Spodoptera , Transfección
19.
Proc Natl Acad Sci U S A ; 100(24): 14012-7, 2003 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-14625374

RESUMEN

The terminally differentiated umbrella cells of bladder epithelium contain unique cytoplasmic organelles, the fusiform vesicles, which deliver preassembled crystalline arrays of uroplakin proteins to the apical cell surface of urothelial umbrella cells. We have investigated the possible role of Rab proteins in this delivery process, and found Rab27b to be expressed at an extraordinary high level (0.1% of total protein) in urothelium, whereas Rab27b levels were greatly reduced (to <5% of normal urothelium) in cultured urothelial cells, which synthesized only small amounts of uroplakins and failed to form fusiform vesicles. Immuno-electron microscopy showed that Rab27b was associated with the cytoplasmic face of the fusiform vesicles, but not with that of the apical plasma membrane. The association of Rab27b with fusiform vesicles and its differentiation-dependent expression suggest that this Rab protein plays a role in regulating the delivery of fusiform vesicles to the apical plasma membrane of umbrella cells.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Urotelio/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Secuencia de Bases , Transporte Biológico Activo , Bovinos , Células Cultivadas , ADN Complementario/genética , Regulación hacia Abajo , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Urotelio/citología , Proteínas de Unión al GTP rab/genética , Proteínas rab27 de Unión a GTP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA