Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cell ; 174(4): 777-779, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096308

RESUMEN

Single-cell RNA sequencing provides a new approach to an old problem: how to study cellular diversity in complex biological systems. Three studies-Saunders et al., Zeisel et al., and Davie et al.-deploy this technique on an unprecedented scale to reveal transcriptional patterns that distinguish cells in the nervous systems of mice and flies.


Asunto(s)
Drosophila , Transcriptoma , Animales , Secuencia de Bases , Encéfalo , Ratones , Análisis de Secuencia de ARN
2.
Cell ; 172(4): 683-695.e15, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29425490

RESUMEN

Fast-spiking interneurons (FSIs) are a prominent class of forebrain GABAergic cells implicated in two seemingly independent network functions: gain control and network plasticity. Little is known, however, about how these roles interact. Here, we use a combination of cell-type-specific ablation, optogenetics, electrophysiology, imaging, and behavior to describe a unified mechanism by which striatal FSIs control burst firing, calcium influx, and synaptic plasticity in neighboring medium spiny projection neurons (MSNs). In vivo silencing of FSIs increased bursting, calcium transients, and AMPA/NMDA ratios in MSNs. In a motor sequence task, FSI silencing increased the frequency of calcium transients but reduced the specificity with which transients aligned to individual task events. Consistent with this, ablation of FSIs disrupted the acquisition of striatum-dependent egocentric learning strategies. Together, our data support a model in which feedforward inhibition from FSIs temporally restricts MSN bursting and calcium-dependent synaptic plasticity to facilitate striatum-dependent sequence learning.


Asunto(s)
Señalización del Calcio/fisiología , Interneuronas/metabolismo , Aprendizaje/fisiología , Red Nerviosa/metabolismo , Plasticidad Neuronal/fisiología , Animales , Interneuronas/citología , Ratones , Ratones Transgénicos , N-Metilaspartato/metabolismo , Red Nerviosa/citología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
3.
Cell ; 174(2): 481-496.e19, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30007419

RESUMEN

Dopamine (DA) is a central monoamine neurotransmitter involved in many physiological and pathological processes. A longstanding yet largely unmet goal is to measure DA changes reliably and specifically with high spatiotemporal precision, particularly in animals executing complex behaviors. Here, we report the development of genetically encoded GPCR-activation-based-DA (GRABDA) sensors that enable these measurements. In response to extracellular DA, GRABDA sensors exhibit large fluorescence increases (ΔF/F0 ∼90%) with subcellular resolution, subsecond kinetics, nanomolar to submicromolar affinities, and excellent molecular specificity. GRABDA sensors can resolve a single-electrical-stimulus-evoked DA release in mouse brain slices and detect endogenous DA release in living flies, fish, and mice. In freely behaving mice, GRABDA sensors readily report optogenetically elicited nigrostriatal DA release and depict dynamic mesoaccumbens DA signaling during Pavlovian conditioning or during sexual behaviors. Thus, GRABDA sensors enable spatiotemporally precise measurements of DA dynamics in a variety of model organisms while exhibiting complex behaviors.


Asunto(s)
Dopamina/análisis , Drosophila/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Conducta Animal , Dopamina/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Neuronas/citología , Neuronas/metabolismo , Optogenética/métodos , Receptores Acoplados a Proteínas G/genética , Canales Catiónicos TRPV/genética , Proteínas de Pez Cebra/genética
4.
Cell ; 164(3): 526-37, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824660

RESUMEN

The basal ganglia (BG) are critical for adaptive motor control, but the circuit principles underlying their pathway-specific modulation of target regions are not well understood. Here, we dissect the mechanisms underlying BG direct and indirect pathway-mediated control of the mesencephalic locomotor region (MLR), a brainstem target of BG that is critical for locomotion. We optogenetically dissect the locomotor function of the three neurochemically distinct cell types within the MLR: glutamatergic, GABAergic, and cholinergic neurons. We find that the glutamatergic subpopulation encodes locomotor state and speed, is necessary and sufficient for locomotion, and is selectively innervated by BG. We further show activation and suppression, respectively, of MLR glutamatergic neurons by direct and indirect pathways, which is required for bidirectional control of locomotion by BG circuits. These findings provide a fundamental understanding of how BG can initiate or suppress a motor program through cell-type-specific regulation of neurons linked to specific actions.


Asunto(s)
Ganglios Basales/fisiología , Mapeo Encefálico , Mesencéfalo/citología , Actividad Motora , Vías Nerviosas , Animales , Neuronas GABAérgicas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Optogenética
5.
Nature ; 608(7922): 374-380, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35831501

RESUMEN

Food and water are rewarding in part because they satisfy our internal needs1,2. Dopaminergic neurons in the ventral tegmental area (VTA) are activated by gustatory rewards3-5, but how animals learn to associate these oral cues with the delayed physiological effects of ingestion is unknown. Here we show that individual dopaminergic neurons in the VTA respond to detection of nutrients or water at specific stages of ingestion. A major subset of dopaminergic neurons tracks changes in systemic hydration that occur tens of minutes after thirsty mice drink water, whereas different dopaminergic neurons respond to nutrients in the gastrointestinal tract. We show that information about fluid balance is transmitted to the VTA by a hypothalamic pathway and then re-routed to downstream circuits that track the oral, gastrointestinal and post-absorptive stages of ingestion. To investigate the function of these signals, we used a paradigm in which a fluid's oral and post-absorptive effects can be independently manipulated and temporally separated. We show that mice rapidly learn to prefer one fluid over another based solely on its rehydrating ability and that this post-ingestive learning is prevented if dopaminergic neurons in the VTA are selectively silenced after consumption. These findings reveal that the midbrain dopamine system contains subsystems that track different modalities and stages of ingestion, on timescales from seconds to tens of minutes, and that this information is used to drive learning about the consequences of ingestion.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Hipotálamo , Vías Nerviosas , Nutrientes , Estado de Hidratación del Organismo , Área Tegmental Ventral , Animales , Señales (Psicología) , Digestión , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Ingestión de Alimentos , Tracto Gastrointestinal/metabolismo , Hipotálamo/citología , Hipotálamo/fisiología , Mesencéfalo/citología , Mesencéfalo/fisiología , Ratones , Nutrientes/metabolismo , Estado de Hidratación del Organismo/efectos de los fármacos , Recompensa , Factores de Tiempo , Área Tegmental Ventral/citología , Área Tegmental Ventral/fisiología , Agua/metabolismo , Agua/farmacología , Equilibrio Hidroelectrolítico
6.
Cell ; 149(3): 708-21, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541439

RESUMEN

Alzheimer's disease (AD) results in cognitive decline and altered network activity, but the mechanisms are unknown. We studied human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Electroencephalographic recordings in hAPP mice revealed spontaneous epileptiform discharges, indicating network hypersynchrony, primarily during reduced gamma oscillatory activity. Because this oscillatory rhythm is generated by inhibitory parvalbumin (PV) cells, network dysfunction in hAPP mice might arise from impaired PV cells. Supporting this hypothesis, hAPP mice and AD patients had decreased levels of the interneuron-specific and PV cell-predominant voltage-gated sodium channel subunit Nav1.1. Restoring Nav1.1 levels in hAPP mice by Nav1.1-BAC expression increased inhibitory synaptic activity and gamma oscillations and reduced hypersynchrony, memory deficits, and premature mortality. We conclude that reduced Nav1.1 levels and PV cell dysfunction critically contribute to abnormalities in oscillatory rhythms, network synchrony, and memory in hAPP mice and possibly in AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Interneuronas/metabolismo , Aprendizaje , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1 , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Canales de Sodio/metabolismo , Sinapsis
7.
J Neurosci ; 42(13): 2835-2848, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35165171

RESUMEN

Abnormal involuntary movements, or dyskinesias, are seen in many neurologic diseases, including disorders where the brain appears grossly normal. This observation suggests that alterations in neural activity or connectivity may underlie dyskinesias. One influential model proposes that involuntary movements are driven by an imbalance in the activity of striatal direct and indirect pathway neurons (dMSNs and iMSNs, respectively). Indeed, in some animal models, there is evidence that dMSN hyperactivity contributes to dyskinesia. Given the many diseases associated with dyskinesia, it is unclear whether these findings generalize to all forms. Here, we used male and female mice in a mouse model of paroxysmal nonkinesigenic dyskinesia (PNKD) to assess whether involuntary movements are related to aberrant activity in the striatal direct and indirect pathways. In this model, as in the human disorder PNKD, animals experience dyskinetic attacks in response to caffeine or alcohol. Using optically identified striatal single-unit recordings in freely moving PNKD mice, we found a loss of iMSN firing during dyskinesia bouts. Further, chemogenetic inhibition of iMSNs triggered dyskinetic episodes in PNKD mice. Finally, we found that these decreases in iMSN firing are likely because of aberrant endocannabinoid-mediated suppression of glutamatergic inputs. These data show that striatal iMSN dysfunction contributes to the etiology of dyskinesia in PNKD, and suggest that indirect pathway hypoactivity may be a key mechanism for the generation of involuntary movements in other disorders.SIGNIFICANCE STATEMENT Involuntary movements, or dyskinesias, are part of many inherited and acquired neurologic syndromes. There are few effective treatments, most of which have significant side effects. Better understanding of which cells and patterns of activity cause dyskinetic movements might inform the development of new neuromodulatory treatments. In this study, we used a mouse model of an inherited human form of paroxysmal dyskinesia in combination with cell type-specific tools to monitor and manipulate striatal activity. We were able to narrow in on a specific group of neurons that causes dyskinesia in this model, and found alterations in a well-known form of plasticity in this cell type, endocannabinoid-dependent synaptic LTD. These findings point to new areas for therapeutic development.


Asunto(s)
Corea , Discinesias , Animales , Corea/inducido químicamente , Cuerpo Estriado , Modelos Animales de Enfermedad , Discinesias/etiología , Femenino , Levodopa/efectos adversos , Masculino , Ratones , Neuronas
8.
J Neurosci ; 41(25): 5487-5501, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34001628

RESUMEN

The dorsomedial prefrontal cortex (dmPFC) has been linked to avoidance and decision-making under conflict, key neural computations altered in anxiety disorders. However, the heterogeneity of prefrontal projections has obscured identification of specific top-down projections involved. While the dmPFC-amygdala circuit has long been implicated in controlling reflexive fear responses, recent work suggests that dmPFC-dorsomedial striatum (DMS) projections may be more important for regulating avoidance. Using fiber photometry recordings in both male and female mice during the elevated zero maze task, we show heightened neural activity in frontostriatal but not frontoamygdalar projection neurons during exploration of the anxiogenic open arms. Additionally, using optogenetics, we demonstrate that this frontostriatal projection preferentially excites postsynaptic D1 receptor-expressing neurons in the DMS and causally controls innate avoidance behavior. These results support a model for prefrontal control of defensive behavior in which the dmPFC-amygdala projection controls reflexive fear behavior and the dmPFC-striatum projection controls anxious avoidance behavior.SIGNIFICANCE STATEMENT The medial prefrontal cortex has been extensively linked to several behavioral symptom domains related to anxiety disorders, with much of the work centered around reflexive fear responses. Comparatively little is known at the mechanistic level about anxious avoidance behavior, a core feature across anxiety disorders. Recent work has suggested that the striatum may be an important hub for regulating avoidance behaviors. Our work uses optical circuit dissection techniques to identify a specific corticostriatal circuit involved in encoding and controlling avoidance behavior. Identifying neural circuits for avoidance will enable the development of more targeted symptom-specific treatments for anxiety disorders.


Asunto(s)
Reacción de Prevención/fisiología , Cuerpo Estriado/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Animales , Conducta Animal/fisiología , Femenino , Instinto , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Annu Rev Neurosci ; 37: 117-35, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25032493

RESUMEN

The basal ganglia are a series of interconnected subcortical nuclei. The function and dysfunction of these nuclei have been studied intensively in motor control, but more recently our knowledge of these functions has broadened to include prominent roles in cognition and affective control. This review summarizes historical models of basal ganglia function, as well as findings supporting or conflicting with these models, while emphasizing recent work in animals and humans directly testing the hypotheses generated by these models.


Asunto(s)
Enfermedades de los Ganglios Basales/fisiopatología , Ganglios Basales/fisiología , Ganglios Basales/fisiopatología , Modelos Neurológicos , Animales , Humanos , Vías Nerviosas/fisiología , Vías Nerviosas/fisiopatología
10.
Annu Rev Physiol ; 78: 327-50, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26667072

RESUMEN

Circuit dysfunction models of psychiatric disease posit that pathological behavior results from abnormal patterns of electrical activity in specific cells and circuits in the brain. Many psychiatric disorders are associated with abnormal activity in the prefrontal cortex and in the basal ganglia, a set of subcortical nuclei implicated in cognitive and motor control. Here we discuss the role of the basal ganglia and connected prefrontal regions in the etiology and treatment of obsessive-compulsive disorder, anxiety, and depression, emphasizing mechanistic work in rodent behavioral models to dissect causal cortico-basal ganglia circuits underlying discrete behavioral symptom domains relevant to these complex disorders.


Asunto(s)
Ganglios Basales/fisiopatología , Trastornos Mentales/fisiopatología , Vías Nerviosas/fisiopatología , Corteza Prefrontal/fisiopatología , Animales , Humanos
11.
J Neurosci ; 37(45): 10817-10825, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118210

RESUMEN

Neurological disease drives symptoms through pathological changes to circuit functions. Therefore, understanding circuit mechanisms that drive behavioral dysfunction is of critical importance for quantitative diagnosis and systematic treatment of neurological disease. Here, we describe key technologies that enable measurement and manipulation of neural activity and neural circuits. Applying these approaches led to the discovery of circuit mechanisms underlying pathological motor behavior, arousal regulation, and protein accumulation. Finally, we discuss how optogenetic functional magnetic resonance imaging reveals global scale circuit mechanisms, and how circuit manipulations could lead to new treatments of neurological diseases.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Vías Nerviosas/anatomía & histología , Animales , Encéfalo/fisiología , Humanos , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Optogenética
12.
Annu Rev Neurosci ; 32: 127-47, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19400717

RESUMEN

The basal ganglia occupy the core of the forebrain and consist of evolutionarily conserved motor nuclei that form recurrent circuits critical for motivation and motor planning. The striatum is the main input nucleus of the basal ganglia and a key neural substrate for procedural learning and memory. The vast majority of striatal neurons are spiny GABAergic projection neurons, which exhibit slow but temporally precise spiking in vivo. Contributing to this precision are several different types of interneurons that constitute only a small fraction of total neuron number but play a critical role in regulating striatal output. This review examines the cellular physiology and modulation of striatal neurons that give rise to their unique properties and function.


Asunto(s)
Cuerpo Estriado/fisiología , Vías Nerviosas/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , Potenciales de Acción/fisiología , Animales , Enfermedades de los Ganglios Basales/patología , Enfermedades de los Ganglios Basales/fisiopatología , Cuerpo Estriado/citología , Humanos , Interneuronas/citología , Interneuronas/metabolismo , Vías Nerviosas/citología , Neuronas/citología , Neurópilo/fisiología , Neurópilo/ultraestructura
13.
Nature ; 466(7306): 622-6, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20613723

RESUMEN

Neural circuits of the basal ganglia are critical for motor planning and action selection. Two parallel basal ganglia pathways have been described, and have been proposed to exert opposing influences on motor function. According to this classical model, activation of the 'direct' pathway facilitates movement and activation of the 'indirect' pathway inhibits movement. However, more recent anatomical and functional evidence has called into question the validity of this hypothesis. Because this model has never been empirically tested, the specific function of these circuits in behaving animals remains unknown. Here we report direct activation of basal ganglia circuitry in vivo, using optogenetic control of direct- and indirect-pathway medium spiny projection neurons (MSNs), achieved through Cre-dependent viral expression of channelrhodopsin-2 in the striatum of bacterial artificial chromosome transgenic mice expressing Cre recombinase under control of regulatory elements for the dopamine D1 or D2 receptor. Bilateral excitation of indirect-pathway MSNs elicited a parkinsonian state, distinguished by increased freezing, bradykinesia and decreased locomotor initiations. In contrast, activation of direct-pathway MSNs reduced freezing and increased locomotion. In a mouse model of Parkinson's disease, direct-pathway activation completely rescued deficits in freezing, bradykinesia and locomotor initiation. Taken together, our findings establish a critical role for basal ganglia circuitry in the bidirectional regulation of motor behaviour and indicate that modulation of direct-pathway circuitry may represent an effective therapeutic strategy for ameliorating parkinsonian motor deficits.


Asunto(s)
Ganglios Basales/citología , Ganglios Basales/fisiopatología , Modelos Neurológicos , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Animales , Ganglios Basales/patología , Ganglios Basales/fisiología , Channelrhodopsins , Cromosomas Artificiales Bacterianos/genética , Modelos Animales de Enfermedad , Marcha , Hipocinesia/complicaciones , Hipocinesia/genética , Hipocinesia/fisiopatología , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Actividad Motora/fisiología , Neostriado/citología , Neostriado/patología , Neostriado/fisiología , Neostriado/fisiopatología , Vías Nerviosas/citología , Vías Nerviosas/patología , Vías Nerviosas/fisiología , Neuronas/citología , Neuronas/patología , Neuronas/fisiología , Oxidopamina , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Desempeño Psicomotor , Receptores Dopaminérgicos/genética
14.
J Neurosci ; 34(26): 8772-7, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24966377

RESUMEN

It is now clear that many neuronal populations release more than one classical neurotransmitter, yet in most cases the functional role of corelease is unknown. Striatal cholinergic interneurons release both glutamate and acetylcholine, and vesicular loading of glutamate has been shown to enhance acetylcholine content. Using a combination of optogenetics and whole-cell recordings in mice, we now provide physiological evidence that optogenetic stimulation of cholinergic interneurons triggers monosynaptic glutamate- and acetylcholine-mediated currents in striatal fast-spiking interneurons (FSIs), both of which depend on the expression of the vesicular glutamate transporter 3 (VGLUT3). In contrast to corticostriatal glutamatergic inputs onto FSIs, which are mediated primarily by AMPA-type glutamate receptors, glutamate release by cholinergic interneurons activates both AMPA- and NMDA-type glutamate receptors, suggesting a unique role for these inputs in the modulation of FSI activity. Importantly, we find that the loss of VGLUT3 not only markedly attenuates glutamatergic and cholinergic inputs on FSIs, but also significantly decreases disynaptic GABAergic input onto medium spiny neurons (MSNs), the major output neurons of the striatum. Our data demonstrate that VGLUT3 is required for normal cholinergic signaling onto FSIs, as well as for acetylcholine-dependent disynaptic inhibition of MSNs. Thus, by supporting fast glutamatergic transmission as well as by modulating the strength of cholinergic signaling, VGLUT3 has the capacity to exert widespread influence on the striatal network.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Neuronas Colinérgicas/fisiología , Cuerpo Estriado/fisiología , Interneuronas/fisiología , Transmisión Sináptica/fisiología , Acetilcolina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Neuronas Colinérgicas/metabolismo , Cuerpo Estriado/metabolismo , Ácido Glutámico/metabolismo , Interneuronas/metabolismo , Ratones , Ratones Transgénicos
15.
J Neurosci ; 33(47): 18531-9, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24259575

RESUMEN

The direct and indirect efferent pathways from striatum ultimately reconverge to influence basal ganglia output nuclei, which in turn regulate behavior via thalamocortical and brainstem motor circuits. However, the distinct contributions of these two efferent pathways in shaping basal ganglia output are not well understood. We investigated these processes using selective optogenetic control of the direct and indirect pathways, in combination with single-unit recording in the basal ganglia output nucleus substantia nigra pars reticulata (SNr) in mice. Optogenetic activation of striatal direct and indirect pathway projection neurons produced diverse cellular responses in SNr neurons, with stimulation of each pathway eliciting both excitations and inhibitions. Despite this response heterogeneity, the effectiveness of direct pathway stimulation in producing movement initiation correlated selectively with the subpopulation of inhibited SNr neurons. In contrast, effective indirect pathway-mediated motor suppression was most strongly influenced by excited SNr neurons. Our results support the theory that key basal ganglia output neurons serve as an inhibitory gate over motor output that can be opened or closed by striatal direct and indirect pathways, respectively.


Asunto(s)
Ganglios Basales/citología , Locomoción/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Channelrhodopsins , Estimulación Eléctrica , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/fisiología , Optogenética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de Adenosina A2/genética , Receptores de Dopamina D1/genética , Sustancia Negra/citología
16.
J Neurosci ; 32(27): 9119-23, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22764221

RESUMEN

Studies of striatal physiology and motor control have increasingly relied on the use of bacterial artificial chromosome (BAC) transgenic mice expressing fluorophores or other genes under the control of genetic regulatory elements for the dopamine D1 receptor (D1R) or dopamine D2 receptor (D2R). Three recent studies have compared wild-type, D1R, and D2R BAC transgenic mice, and found significant differences in physiology and behavior, calling into question the use of these mice in studies of normal circuit function. We repeated the behavioral portions of these studies in wild-type C57BL/6 mice and hemizygous Drd1a-td Tomato (D1-Tmt), Drd1a-eGFP (D1-GFP), and Drd2-eGFP (D2-GFP) mice backcrossed into the C57BL/6 background. Our three laboratories independently found that open-field locomotion, acute locomotor responses to cocaine (20 mg/kg), locomotor sensitization to 5 d of daily injections of cocaine (15 mg/kg) or amphetamine (3 mg/kg), cocaine (20 mg/kg) conditioned place preference, and active avoidance learning to paired light and footshock were indistinguishable in these four mouse lines. These results suggest that while it is crucial to screen new transgenic mouse lines for abnormal behavior and physiology, these BAC transgenic mouse lines remain extremely valuable tools for evaluating the cellular, synaptic, and circuit basis of striatal motor control and associative learning.


Asunto(s)
Conducta Animal/fisiología , Cuerpo Estriado/fisiología , Dopaminérgicos/farmacología , Ratones Transgénicos/genética , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Animales , Reacción de Prevención/fisiología , Conducta de Elección/fisiología , Cromosomas Artificiales Bacterianos/genética , Cuerpo Estriado/efectos de los fármacos , Conducta Exploratoria/fisiología , Femenino , Hemicigoto , Locomoción/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales
17.
Physiology (Bethesda) ; 27(3): 167-77, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22689792

RESUMEN

Direct and indirect pathway striatal neurons are known to exert opposing control over motor output. In this review, we discuss a hypothetical extension of this framework, in which direct pathway striatal neurons also mediate reinforcement and reward, and indirect pathway neurons mediate punishment and aversion.


Asunto(s)
Cuerpo Estriado/fisiología , Movimiento/fisiología , Castigo , Refuerzo en Psicología , Animales , Corteza Cerebral/fisiología , Humanos , Neuronas/fisiología
18.
Nature ; 445(7128): 643-7, 2007 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-17287809

RESUMEN

The striatum is a major forebrain nucleus that integrates cortical and thalamic afferents and forms the input nucleus of the basal ganglia. Striatal projection neurons target the substantia nigra pars reticulata (direct pathway) or the lateral globus pallidus (indirect pathway). Imbalances between neural activity in these two pathways have been proposed to underlie the profound motor deficits observed in Parkinson's disease and Huntington's disease. However, little is known about differences in cellular and synaptic properties in these circuits. Indeed, current hypotheses suggest that these cells express similar forms of synaptic plasticity. Here we show that excitatory synapses onto indirect-pathway medium spiny neurons (MSNs) exhibit higher release probability and larger N-methyl-d-aspartate receptor currents than direct-pathway synapses. Moreover, indirect-pathway MSNs selectively express endocannabinoid-mediated long-term depression (eCB-LTD), which requires dopamine D2 receptor activation. In models of Parkinson's disease, indirect-pathway eCB-LTD is absent but is rescued by a D2 receptor agonist or inhibitors of endocannabinoid degradation. Administration of these drugs together in vivo reduces parkinsonian motor deficits, suggesting that endocannabinoid-mediated depression of indirect-pathway synapses has a critical role in the control of movement. These findings have implications for understanding the normal functions of the basal ganglia, and also suggest approaches for the development of therapeutic drugs for the treatment of striatal-based brain disorders.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Depresión Sináptica a Largo Plazo/fisiología , Neostriado/fisiología , Enfermedad de Parkinson/metabolismo , Desempeño Psicomotor/fisiología , Animales , Benzamidas/farmacología , Benzoxazinas , Carbamatos/farmacología , Modelos Animales de Enfermedad , Dopamina/deficiencia , Dopamina/metabolismo , Antagonistas de los Receptores de Dopamina D2 , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Técnicas In Vitro , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Ratones , Ratones Transgénicos , Morfolinas/farmacología , Naftalenos/farmacología , Neostriado/citología , Neostriado/efectos de los fármacos , Plasticidad Neuronal/fisiología , Oxidopamina/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reserpina/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
19.
J Neurosci ; 31(44): 15727-31, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22049415

RESUMEN

Fast-spiking interneurons (FSIs) can exert powerful control over striatal output, and deficits in this cell population have been observed in human patients with Tourette syndrome and rodent models of dystonia. However, a direct experimental test of striatal FSI involvement in motor control has never been performed. We applied a novel pharmacological approach to examine the behavioral consequences of selective FSI suppression in mouse striatum. IEM-1460, an inhibitor of GluA2-lacking AMPARs, selectively blocked synaptic excitation of FSIs but not striatal projection neurons. Infusion of IEM-1460 into the sensorimotor striatum reduced the firing rate of FSIs but not other cell populations, and elicited robust dystonia-like impairments. These results provide direct evidence that hypofunction of striatal FSIs can produce movement abnormalities, and suggest that they may represent a novel therapeutic target for the treatment of hyperkinetic movement disorders.


Asunto(s)
Potenciales de Acción/fisiología , Cuerpo Estriado/patología , Discinesias/etiología , Discinesias/patología , Interneuronas/fisiología , Adamantano/efectos adversos , Adamantano/análogos & derivados , Análisis de Varianza , Animales , Área Bajo la Curva , Antagonistas Colinérgicos/efectos adversos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Antagonistas de Aminoácidos Excitadores/efectos adversos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Lateralidad Funcional/efectos de los fármacos , Lateralidad Funcional/fisiología , Proteínas Fluorescentes Verdes/genética , Interneuronas/clasificación , Interneuronas/efectos de los fármacos , Proteínas con Homeodominio LIM/genética , Masculino , Mecamilamina/efectos adversos , Ratones , Ratones Transgénicos , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/genética , Escopolamina/efectos adversos , Factores de Transcripción/genética
20.
J Neurosci ; 30(6): 2160-4, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20147543

RESUMEN

Adenosine A(2A) receptor antagonists are psychomotor stimulants that also hold therapeutic promise for movement disorders. However, the molecular mechanisms underlying their stimulant properties are not well understood. Here, we show that the robust increase in locomotor activity induced by an A(2A) antagonist in vivo is greatly attenuated by antagonizing cannabinoid CB(1) receptor signaling or by administration to CB(1)(-/-) mice. To determine the locus of increased endocannabinoid signaling, we measured the amount of anandamide [AEA (N-arachidonoylethanolamine)] and 2-arachidonoylglycerol (2-AG) in brain tissue from striatum and cortex. We find that 2-AG is selectively increased in striatum after acute blockade of A(2A) receptors, which are highly expressed by striatal indirect-pathway medium spiny neurons (MSNs). Using targeted whole-cell recordings from direct- and indirect-pathway MSNs, we demonstrate that A(2A) receptor antagonists potentiate 2-AG release and induction of long-term depression at indirect-pathway MSNs, but not direct-pathway MSNs. Together, these data outline a molecular mechanism by which A(2A) antagonists reduce excitatory synaptic drive on the indirect pathway through CB(1) receptor signaling, thus leading to increased psychomotor activation.


Asunto(s)
Antagonistas del Receptor de Adenosina A2 , Moduladores de Receptores de Cannabinoides/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Endocannabinoides , Actividad Motora/efectos de los fármacos , Vías Aferentes/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Ácido Glutámico/metabolismo , Glicéridos/metabolismo , Depresión Sináptica a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Piperidinas/farmacología , Alcamidas Poliinsaturadas/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA