RESUMEN
The molecular complexity of human breast cancer (BC) renders the clinical management of the disease challenging. Long non-coding RNAs (lncRNAs) are promising biomarkers for BC patient stratification, early detection, and disease monitoring. Here, we identified the involvement of the long intergenic non-coding RNA 01087 (LINC01087) in breast oncogenesis. LINC01087 appeared significantly downregulated in triple-negative BCs (TNBCs) and upregulated in the luminal BC subtypes in comparison to mammary samples from cancer-free women and matched normal cancer pairs. Interestingly, deregulation of LINC01087 allowed to accurately distinguish between luminal and TNBC specimens, independently of the clinicopathological parameters, and of the histological and TP53 or BRCA1/2 mutational status. Moreover, increased expression of LINC01087 predicted a better prognosis in luminal BCs, while TNBC tumors that harbored lower levels of LINC01087 were associated with reduced relapse-free survival. Furthermore, bioinformatics analyses were performed on TNBC and luminal BC samples and suggested that the putative tumor suppressor activity of LINC01087 may rely on interferences with pathways involved in cell survival, proliferation, adhesion, invasion, inflammation and drug sensitivity. Altogether, these data suggest that the assessment of LINC01087 deregulation could represent a novel, specific and promising biomarker not only for the diagnosis and prognosis of luminal BC subtypes and TNBCs, but also as a predictive biomarker of pharmacological interventions.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Células MCF-7 , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia , Supervivencia sin Progresión , Mapas de Interacción de Proteínas , ARN Largo no Codificante/genética , Transducción de Señal , Factores de Tiempo , Transcriptoma , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
The pharmacological targeting of polyamine metabolism is currently under the spotlight for its potential in the prevention and treatment of several age-associated disorders. Here, we report the finding that triethylenetetramine dihydrochloride (TETA), a copper-chelator agent that can be safely administered to patients for the long-term treatment of Wilson disease, exerts therapeutic benefits in animals challenged with hypercaloric dietary regimens. TETA reduced obesity induced by high-fat diet, excessive sucrose intake, or leptin deficiency, as it reduced glucose intolerance and hepatosteatosis, but induced autophagy. Mechanistically, these effects did not involve the depletion of copper from plasma or internal organs. Rather, the TETA effects relied on the activation of an energy-consuming polyamine catabolism, secondary to the stabilization of spermidine/spermine N1-acetyltransferase-1 (SAT1) by TETA, resulting in enhanced enzymatic activity of SAT. All the positive effects of TETA on high-fat diet-induced metabolic syndrome were lost in SAT1-deficient mice. Altogether, these results suggest novel health-promoting effects of TETA that might be taken advantage of for the prevention or treatment of obesity.
Asunto(s)
Acetiltransferasas/metabolismo , Quelantes/farmacología , Obesidad/tratamiento farmacológico , Trientina/análogos & derivados , Animales , Dieta Alta en Grasa , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/inducido químicamenteRESUMEN
Hormone receptor (HR)+ breast cancer (BC) causes most BC-related deaths, calling for improved therapeutic approaches. Despite expectations, immune checkpoint blockers (ICBs) are poorly active in patients with HR+ BC, in part reflecting the lack of preclinical models that recapitulate disease progression in immunocompetent hosts. We demonstrate that mammary tumors driven by medroxyprogesterone acetate (M) and 7,12-dimethylbenz[a]anthracene (D) recapitulate several key features of human luminal B HR+HER2- BC, including limited immune infiltration and poor sensitivity to ICBs. M/D-driven oncogenesis is accelerated by immune defects, demonstrating that M/D-driven tumors are under immunosurveillance. Safe nutritional measures including nicotinamide (NAM) supplementation efficiently delay M/D-driven oncogenesis by reactivating immunosurveillance. NAM also mediates immunotherapeutic effects against established M/D-driven and transplantable BC, largely reflecting increased type I interferon secretion by malignant cells and direct stimulation of immune effector cells. Our findings identify NAM as a potential strategy for the prevention and treatment of HR+ BC.
Asunto(s)
Neoplasias de la Mama/terapia , Inmunoterapia/métodos , Niacinamida/administración & dosificación , Receptor ErbB-2/inmunología , 9,10-Dimetil-1,2-benzantraceno , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/inmunología , Progresión de la Enfermedad , Femenino , Humanos , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/prevención & control , Acetato de Medroxiprogesterona , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor ErbB-2/metabolismo , Análisis de SupervivenciaRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
The expression of two metabolic enzymes, i.e., aldehyde dehydrogenase 7 family, member A1 (ALDH7A1) and lipase C, hepatic type (LIPC) by malignant cells, has been measured by immunohistochemical methods in non-small cell lung carcinoma (NSCLC) biopsies, and has been attributed negative and positive prognostic value, respectively. Here, we demonstrate that the protein levels of ALDH7A1 and LIPC correlate with the levels of the corresponding mRNAs. Bioinformatic analyses of gene expression data from 4921 cancer patients revealed that the expression of LIPC positively correlates with abundant tumor infiltration by myeloid and lymphoid cells in NSCLC, breast carcinoma, colorectal cancer and melanoma samples. In contrast, high levels of ALDH7A1 were associated with a paucity of immune effectors within the tumor bed. These data reinforce the notion that the metabolism of cancer cells has a major impact on immune and inflammatory processes in the tumor microenvironment, pointing to hitherto unsuspected intersections between oncometabolism and immunometabolism.
RESUMEN
We have recently shown that chemotherapy with immunogenic cell death (ICD)-inducing agents can be advantageously combined with fasting regimens or caloric restriction mimetics (CRMs) to achieve superior tumor growth control via a T cell-dependent mechanism. Here, we show that the blockade of the CD11b-dependent extravasation of myeloid cells blocks such a combination effect as well. Based on the characterization of the myeloid and lymphoid immune infiltrates, including the expression pattern of immune checkpoint proteins (and noting a chemotherapy-induced overexpression of programmed death-ligand 1, PD-L1, on both cancer cells and leukocytes, as well as a reduced frequency of exhausted CD8+ T cells positive for programmed cell death 1 protein, PD-1), we then evaluated the possibility to combine ICD inducers, CRMs and targeting of the PD-1/PD-L1 interaction. While fasting or CRMs failed to improve tumor growth control by PD-1 blockade, ICD inducers alone achieved a partial sensitization to treatment with a PD-1-specific antibody. However, definitive cure of most of the tumor-bearing mice was only achieved by a tritherapy combining (i) ICD inducers exemplified by mitoxantrone and oxaliplatin, (ii) CRMs exemplified by hydroxycitrate and spermidine and substitutable for by fasting, and (iii) immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 interaction. Altogether, these results point to the possibility of synergistic interactions among distinct classes of anticancer agents.