Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(4): 047001, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35148145

RESUMEN

Hydrogen-based superconductors provide a route to the long-sought goal of room-temperature superconductivity, but the high pressures required to metallize these materials limit their immediate application. For example, carbonaceous sulfur hydride, the first room-temperature superconductor made in a laboratory, can reach a critical temperature (T_{c}) of 288 K only at the extreme pressure of 267 GPa. The next recognized challenge is the realization of room-temperature superconductivity at significantly lower pressures. Here, we propose a strategy for the rational design of high-temperature superconductors at low pressures by alloying small-radius elements and hydrogen to form ternary H-based superconductors with alloy backbones. We identify a "fluorite-type" backbone in compositions of the form AXH_{8}, which exhibit high-temperature superconductivity at moderate pressures compared with other reported hydrogen-based superconductors. The Fm3[over ¯]m phase of LaBeH_{8}, with a fluorite-type H-Be alloy backbone, is predicted to be thermodynamically stable above 98 GPa, and dynamically stable down to 20 GPa with a high T_{c}∼185 K. This is substantially lower than the synthesis pressure required by the geometrically similar clathrate hydride LaH_{10} (170 GPa). Our approach paves the way for finding high-T_{c} ternary H-based superconductors at conditions close to ambient pressures.

2.
Phys Chem Chem Phys ; 24(3): 1898-1899, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35024713

RESUMEN

Our paper is concerned with the specific hydrogen compound MoH11. The authors of the Comment advocate investigating the role of umklapp processes (UP). For the hydrogen compounds, the main contribution to the strength of the pairing interaction is provided not by acoustic, but by optical phonons. This key factor leads to a diminishing role of the UP for the compound of interest.

3.
Phys Chem Chem Phys ; 23(11): 6717-6724, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33710184

RESUMEN

The discovery of H3S and LaH10 is an important step towards the development of room temperature superconductors which fuels the enthusiasm for finding promising superconductors among hydrides at high pressure. In the present study, three new and stable stoichiometric MoH5, MoH6 and MoH11 compounds were found in the pressure range of 100-300 GPa. The highly hydrogen-rich phase of Cmmm-MoH11 has a layered structure that contains various forms of hydrogen: H, H2- and H3- units. It is a high-Tc material with an estimated Tc value in the range of 165-182 K at 250 GPa. The same structures are also found in NbH11, TaH11, and WH11, each material showing Tc ranging from 117 to 168 K. By combining the method of using two coupling constants λopt and λac, and two characteristic frequencies (optical and acoustic) with first-principle calculations, we found that the high values of Tc are mainly caused by the presence of high frequency optical modes, but the acoustic modes also play a noticeable role.

4.
Phys Rev Lett ; 125(21): 217001, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33275012

RESUMEN

The recent discovery of H_{3}S and LaH_{10} superconductors with record high superconducting transition temperatures T_{c} at high pressure has fueled the search for room-temperature superconductivity in the compressed superhydrides. Here we introduce a new class of high T_{c} hydrides with a novel structure and unusual properties. We predict the existence of an unprecedented hexagonal HfH_{10}, with remarkably high value of T_{c} (around 213-234 K) at 250 GPa. As concerns the novel structure, the H ions in HfH_{10} are arranged in clusters to form a planar "pentagraphenelike" sublattice. The layered arrangement of these planar units is entirely different from the covalent sixfold cubic structure in H_{3}S and clathratelike structure in LaH_{10}. The Hf atom acts as a precompressor and electron donor to the hydrogen sublattice. This pentagraphenelike H_{10} structure is also found in ZrH_{10}, ScH_{10}, and LuH_{10} at high pressure, each material showing a high T_{c} ranging from 134 to 220 K. Our study of dense superhydrides with pentagraphenelike layered structures opens the door to the exploration of a new class of high T_{c} superconductors.

5.
Sci Rep ; 6: 25608, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27167334

RESUMEN

The paper discusses fundamentals of record-TC superconductivity discovered under high pressure in sulfur hydride. The rapid increase of TC with pressure in the vicinity of Pcr ≈ 123GPa is interpreted as the fingerprint of a first-order structural transition. Based on the cubic symmetry of the high-TC phase, it is argued that the lower-TC phase has a different periodicity, possibly related to an instability with a commensurate structural vector. In addition to the acoustic branches, the phonon spectrum of H3S contains hydrogen modes with much higher frequencies. Because of the complex spectrum, usual methods of calculating TC are here inapplicable. A modified approach is formulated and shown to provide realistic values for TC and to determine the relative contributions of optical and acoustic branches. The isotope effect (change of TC upon Deuterium for Hydrogen substitution) originates from high frequency phonons and differs in the two phases. The decrease of TC following its maximum in the high-TC phase is a sign of intermixing with pairing at hole-like pockets which arise in the energy spectrum of the cubic phase at the structural transition. On-pockets pairing leads to the appearance of a second gap and is remarkable for its non-adiabatic regime: hydrogen mode frequencies are comparable to the Fermi energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA