Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Carcinog ; 61(3): 281-287, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34758158

RESUMEN

Persistent and symptomatic reflux of gastric and duodenal contents, known as gastroesophageal reflux disease (GERD), is the strongest risk factor for esophageal adenocarcinoma (EAC). Despite similar rates of GERD and other risk factors across racial groups, EAC progression disproportionately impacts Caucasians. We recently reported that elevated tissue levels of the detoxification enzyme GSTT2 in the esophagi of Blacks compared to Caucasians may contribute protection. Herein, we extend our research to investigate whether cranberry proanthocyanidins (C-PAC) mitigate bile acid-induced damage and GSTT2 levels utilizing a racially diverse panel of patient-derived primary esophageal cultures. We have shown that C-PACs mitigate reflux-induced DNA damage through GSTT2 upregulation in a rat esophageal reflux model, but whether effects are recapitulated in humans or differentially based on race remains unknown. We isolated normal primary esophageal cells from Black and Caucasian patients and assessed GSTT2 protein levels and cellular viability following exposure to a bile acid cocktail with and without C-PAC treatment. Constitutive GSTT2 levels were significantly elevated in Black (2.9-fold) compared to Caucasian patients, as were GSTT2 levels in Black patients with GERD. C-PAC treatment induced GSTT2 levels 1.6-fold in primary normal esophageal cells. GSTT2 induction by C-PAC was greatest in cells with constitutively low GSTT2 expression. Overall, C-PAC mitigated bile-induced reductions of GSTT2 and subsequent loss of cell viability regardless of basal GSTT2 expression or race. These data support that C-PAC may be a safe efficacious agent to promote epithelial fitness through GSTT2 induction and in turn protect against bile acid-induced esophageal injury.


Asunto(s)
Neoplasias Esofágicas , Reflujo Gastroesofágico , Proantocianidinas , Vaccinium macrocarpon , Adenocarcinoma , Animales , Ácidos y Sales Biliares , Técnicas de Cultivo de Célula , Neoplasias Esofágicas/genética , Reflujo Gastroesofágico/tratamiento farmacológico , Reflujo Gastroesofágico/genética , Reflujo Gastroesofágico/metabolismo , Glutatión Transferasa , Humanos , Extractos Vegetales/farmacología , Proantocianidinas/farmacología , Ratas
2.
Gastroenterology ; 156(5): 1404-1415, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30578782

RESUMEN

BACKGROUND & AIMS: African American and European American individuals have a similar prevalence of gastroesophageal reflux disease (GERD), yet esophageal adenocarcinoma (EAC) disproportionately affects European American individuals. We investigated whether the esophageal squamous mucosa of African American individuals has features that protect against GERD-induced damage, compared with European American individuals. METHODS: We performed transcriptional profile analysis of esophageal squamous mucosa tissues from 20 African American and 20 European American individuals (24 with no disease and 16 with Barrett's esophagus and/or EAC). We confirmed our findings in a cohort of 56 patients and analyzed DNA samples from patients to identify associated variants. Observations were validated using matched genomic sequence and expression data from lymphoblasts from the 1000 Genomes Project. A panel of esophageal samples from African American and European American subjects was used to confirm allele-related differences in protein levels. The esophageal squamous-derived cell line Het-1A and a rat esophagogastroduodenal anastomosis model for reflux-generated esophageal damage were used to investigate the effects of the DNA-damaging agent cumene-hydroperoxide (cum-OOH) and a chemopreventive cranberry proanthocyanidin (C-PAC) extract, respectively, on levels of protein and messenger RNA (mRNA). RESULTS: We found significantly higher levels of glutathione S-transferase theta 2 (GSTT2) mRNA in squamous mucosa from African American compared with European American individuals and associated these with variants within the GSTT2 locus in African American individuals. We confirmed that 2 previously identified genomic variants at the GSTT2 locus, a 37-kb deletion and a 17-bp promoter duplication, reduce expression of GSTT2 in tissues from European American individuals. The nonduplicated 17-bp promoter was more common in tissue samples from populations of African descendant. GSTT2 protected Het-1A esophageal squamous cells from cum-OOH-induced DNA damage. Addition of C-PAC increased GSTT2 expression in Het-1A cells incubated with cum-OOH and in rats with reflux-induced esophageal damage. C-PAC also reduced levels of DNA damage in reflux-exposed rat esophagi, as observed by reduced levels of phospho-H2A histone family member X. CONCLUSIONS: We found GSTT2 to protect esophageal squamous cells against DNA damage from genotoxic stress and that GSTT2 expression can be induced by C-PAC. Increased levels of GSTT2 in esophageal tissues of African American individuals might protect them from GERD-induced damage and contribute to the low incidence of EAC in this population.


Asunto(s)
Adenocarcinoma/genética , Esófago de Barrett/genética , Negro o Afroamericano/genética , Daño del ADN , Mucosa Esofágica/enzimología , Neoplasias Esofágicas/genética , Reflujo Gastroesofágico/genética , Glutatión Transferasa/genética , Población Blanca/genética , Adenocarcinoma/enzimología , Adenocarcinoma/etnología , Adenocarcinoma/patología , Animales , Esófago de Barrett/enzimología , Esófago de Barrett/etnología , Esófago de Barrett/patología , Modelos Animales de Enfermedad , Mucosa Esofágica/patología , Neoplasias Esofágicas/enzimología , Neoplasias Esofágicas/etnología , Neoplasias Esofágicas/patología , Femenino , Reflujo Gastroesofágico/enzimología , Reflujo Gastroesofágico/etnología , Reflujo Gastroesofágico/patología , Glutatión Transferasa/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Fosfoproteínas/metabolismo , Fosforilación , Factores Protectores , Ratas Sprague-Dawley , Factores de Riesgo , Estados Unidos/epidemiología , Regulación hacia Arriba
3.
Mol Carcinog ; 55(11): 1876-1885, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27696537

RESUMEN

Esophageal adenocarcinoma (EAC) is characterized by rapidly increasing incidence and mortality rates and poor survival. Efficacious preventive and treatment options are urgently needed. An increasing number of pharmacologic agents targeting cancer cell death via autophagy mechanisms are being evaluated in hopes of circumventing apoptotic and therapeutic resistance. We report for the first time, loss of Beclin-1, a key mediator of autophagy, was significantly linked to prognostic factors in EAC. Specifically, Beclin-1 expression loss occurred in 49.0% of EAC patients versus 4.8% of controls. There was a significant inverse correlation between loss of Beclin-1 with histologic grade and tumor stage supporting a tumor suppressive role for Beclin-1. Autophagy modulation linked to cell death was examined in EAC cell lines following treatment with a proanthocyanidin-rich cranberry extract, C-PAC, and the commonly used autophagy inducer, rapamycin. C-PAC induced Beclin-1-independent autophagy in EAC cells characterized by reduced phosphorylation at serine 15 and 93, and significant cell death induction. In contrast, rapamycin-induced autophagy resulted in concomitant, increases in total Beclin-1 levels as well as Beclin-1-phosphorylation in a cell line specific manner, leading to long-term cell survival. Furthermore, autophagic LC3-II was induced by C-PAC following siRNA suppression of Beclin-1 in EAC cells. Together these data support a prognostic role of Beclin-1 in EAC with evidence that Beclin-dependent autophagy induction is agent specific. Future studies are necessary to fully interrogate the role autophagy plays in the progression of normal tissue to EAC and how specific agents targeting autophagic mechanisms can be efficaciously applied for cancer prevention or treatment. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Adenocarcinoma/patología , Antocianinas/farmacología , Beclina-1/genética , Beclina-1/metabolismo , Neoplasias Esofágicas/patología , Sirolimus/farmacología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Clasificación del Tumor , Estadificación de Neoplasias , Fosforilación/efectos de los fármacos , Extractos Vegetales/farmacología , Pronóstico , Análisis de Supervivencia , Vaccinium macrocarpon/química
4.
JCI Insight ; 9(6)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329812

RESUMEN

The gut and local esophageal microbiome progressively shift from healthy commensal bacteria to inflammation-linked pathogenic bacteria in patients with gastroesophageal reflux disease, Barrett's esophagus, and esophageal adenocarcinoma (EAC). However, mechanisms by which microbial communities and metabolites contribute to reflux-driven EAC remain incompletely understood and challenging to target. Herein, we utilized a rat reflux-induced EAC model to investigate targeting the gut microbiome-esophageal metabolome axis with cranberry proanthocyanidins (C-PAC) to inhibit EAC progression. Sprague-Dawley rats, with or without reflux induction, received water or C-PAC ad libitum (700 µg/rat/day) for 25 or 40 weeks. C-PAC exerted prebiotic activity abrogating reflux-induced dysbiosis and mitigating bile acid metabolism and transport, culminating in significant inhibition of EAC through TLR/NF-κB/TP53 signaling cascades. At the species level, C-PAC mitigated reflux-induced pathogenic bacteria (Streptococcus parasanguinis, Escherichia coli, and Proteus mirabilis). C-PAC specifically reversed reflux-induced bacterial, inflammatory, and immune-implicated proteins and genes, including Ccl4, Cd14, Crp, Cxcl1, Il6, Il1b, Lbp, Lcn2, Myd88, Nfkb1, Tlr2, and Tlr4, aligning with changes in human EAC progression, as confirmed through public databases. C-PAC is a safe, promising dietary constituent that may be utilized alone or potentially as an adjuvant to current therapies to prevent EAC progression through ameliorating reflux-induced dysbiosis, inflammation, and cellular damage.


Asunto(s)
Adenocarcinoma , Reflujo Biliar , Neoplasias Esofágicas , Reflujo Gastroesofágico , Microbioma Gastrointestinal , Proantocianidinas , Humanos , Ratas , Animales , Proantocianidinas/farmacología , Proantocianidinas/uso terapéutico , Proantocianidinas/metabolismo , Microbioma Gastrointestinal/fisiología , Disbiosis/tratamiento farmacológico , Ratas Sprague-Dawley , Adenocarcinoma/genética , Reflujo Gastroesofágico/tratamiento farmacológico , Reflujo Gastroesofágico/genética , Inflamación/tratamiento farmacológico , Metaboloma
5.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139823

RESUMEN

We recently reported that cranberry proanthocyanidins (C-PACs) inhibit esophageal adenocarcinoma (EAC) by 83% through reversing reflux-induced bacterial, inflammatory and immune-implicated proteins and genes as well as reducing esophageal bile acids, which drive EAC progression. This study investigated whether C-PACs' mitigation of bile reflux-induced transporter dysregulation mechanistically contributes to EAC prevention. RNA was isolated from water-, C-PAC- and reflux-exposed rat esophagi with and without C-PAC treatment. Differential gene expression was determined by means of RNA sequencing and RT-PCR, followed by protein assessments. The literature, coupled with the publicly available Gene Expression Omnibus dataset GSE26886, was used to assess transporter expression levels in normal and EAC patient biopsies for translational relevance. Significant changes in ATP-binding cassette (ABC) transporters implicated in therapeutic resistance in humans (i.e., Abcb1, Abcb4, Abcc1, Abcc3, Abcc4, Abcc6 and Abcc10) and the transport of drugs, xenobiotics, lipids, and bile were altered in the reflux model with C-PACs' mitigating changes. Additionally, C-PACs restored reflux-induced changes in solute carrier (SLC), aquaporin, proton and cation transporters (i.e., Slc2a1, Slc7a11, Slc9a1, Slco2a1 and Atp6v0c). This research supports the suggestion that transporters merit investigation not only for their roles in metabolism and therapeutic resistance, but as targets for cancer prevention and targeting preventive agents in combination with chemotherapeutics.

6.
bioRxiv ; 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37662411

RESUMEN

The gut and local esophageal microbiome progressively shift from healthy commensal bacteria to inflammatory-linked pathogenic bacteria in patients with gastroesophageal reflux disease, Barrett's esophagus and esophageal adenocarcinoma (EAC). However, mechanisms by which microbial communities and metabolites contribute to reflux-driven EAC remain incompletely understood and challenging to target. Herein, we utilized a rat reflux-induced EAC model to investigate targeting the gut microbiome-esophageal metabolome axis with cranberry proanthocyanidins (C-PAC) to inhibit EAC progression. Sprague Dawley rats, with or without reflux-induction received water or C-PAC ad libitum (700 µg/rat/day) for 25 or 40 weeks. C-PAC exerted prebiotic activity abrogating reflux-induced dysbiosis, and mitigating bile acid metabolism and transport, culminating in significant inhibition of EAC through TLR/NF-κB/P53 signaling cascades. At the species level, C-PAC mitigated reflux-induced pathogenic bacteria (Clostridium perfringens, Escherichia coli, and Proteus mirabilis). C-PAC specifically reversed reflux-induced bacterial, inflammatory and immune-implicated proteins and genes including Ccl4, Cd14, Crp, Cxcl1, Il6, Il1ß, Lbp, Lcn2, Myd88, Nfkb1, Tlr2 and Tlr4 aligning with changes in human EAC progression, as confirmed through public databases. C-PAC is a safe promising dietary constituent that may be utilized alone or potentially as an adjuvant to current therapies to prevent EAC progression through ameliorating reflux-induced dysbiosis, inflammation and cellular damage.

7.
Nutrients ; 14(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35267943

RESUMEN

Esophageal adenocarcinoma (EAC) is a cancer characterized by rapidly rising incidence and poor survival, resulting in the need for new prevention and treatment options. We utilized two cranberry polyphenol extracts, one proanthocyanidin enriched (C-PAC) and a combination of anthocyanins, flavonoids, and glycosides (AFG) to assess inhibitory mechanisms utilizing premalignant Barrett's esophagus (BE) and EAC derived cell lines. We employed reverse phase protein arrays (RPPA) and Western blots to examine cancer-associated pathways and specific signaling cascades modulated by C-PAC or AFG. Viability results show that C-PAC is more potent than AFG at inducing cell death in BE and EAC cell lines. Based on the RPPA results, C-PAC significantly modulated 37 and 69 proteins in JH-EsoAd1 (JHAD1) and OE19 EAC cells, respectively. AFG treatment significantly altered 49 proteins in both JHAD1 and OE19 cells. Bioinformatic analysis of RPPA results revealed many previously unidentified pathways as modulated by cranberry polyphenols including NOTCH signaling, immune response, and epithelial to mesenchymal transition. Collectively, these results provide new insight regarding mechanisms by which cranberry polyphenols exert cancer inhibitory effects targeting EAC, with implications for potential use of cranberry constituents as cancer preventive agents.


Asunto(s)
Neoplasias Esofágicas , Vaccinium macrocarpon , Antocianinas/farmacología , Transición Epitelial-Mesenquimal , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/prevención & control , Extractos Vegetales/farmacología , Polifenoles/farmacología
8.
Mol Ther Nucleic Acids ; 29: 749-768, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36090744

RESUMEN

Isoform switching events with predicted functional consequences are common in many cancers, but characterization of switching events in esophageal adenocarcinoma (EAC) is lacking. Next-generation sequencing was used to detect levels of RNA transcripts and identify specific isoforms in treatment-naïve esophageal tissues ranging from premalignant Barrett's esophagus (BE), BE with low- or high-grade dysplasia (BE.LGD, BE.HGD), and EAC. Samples were stratified by histopathology and TP53 mutation status, identifying significant isoform switching events with predicted functional consequences. Comparing BE.LGD with BE.HGD, a histopathology linked to cancer progression, isoform switching events were identified in 75 genes including KRAS, RNF128, and WRAP53. Stratification based on TP53 status increased the number of significant isoform switches to 135, suggesting switching events affect cellular functions based on TP53 mutation and tissue histopathology. Analysis of isoforms agnostic, exclusive, and shared with mutant TP53 revealed unique signatures including demethylation, lipid and retinoic acid metabolism, and glucuronidation, respectively. Nearly half of isoform switching events were identified without significant gene-level expression changes. Importantly, two TP53-interacting isoforms, RNF128 and WRAP53, were significantly linked to patient survival. Thus, analysis of isoform switching events may provide new insight for the identification of prognostic markers and inform new potential therapeutic targets for EAC.

9.
Carcinogenesis ; 32(9): 1354-60, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21700777

RESUMEN

Defective DNA repair may contribute to early age and late stage at time of diagnosis and mutations in critical tumor suppressor genes, such as TP53 in breast cancer. Using DNA samples from 436 breast cancer cases (374 Caucasians and 62 African-Americans), we tested these associations with 18 non-synonymous single-nucleotide polymorphisms (nsSNPs) in four DNA repair pathways: (i) base excision repair: ADPRT V762A, APE1 D148E, XRCC1 R194W/R280H/R399Q and POLD1 R119H; (ii) double-strand break repair: NBS1 E185Q and XRCC3 T241M; (iii) mismatch repair: MLH1 I219V, MSH3 R940Q/T1036A and MSH6 G39E and (iv) nucleotide excision repair: ERCC2 D312N/K751Q, ERCC4 R415Q, ERCC5 D1104H and XPC A499V/K939Q. Younger age at diagnosis (<50) was associated with ERCC2 312 DN/NN genotypes [odds ratio (OR) = 1.76; 95% confidence interval (CI) = 1.10, 2.81] and NBS1 185 QQ genotype (OR = 3.09; 95% CI = 1.47, 6.49). The XPC 939 QQ genotype was associated with TP53 mutations (OR = 5.80; 95% CI = 2.23, 15.09). There was a significant trend associating younger age at diagnosis (<50) with increasing numbers of risk genotypes for ERCC2 312 DN/NN, MSH6 39 EE and NBS1 185 QQ (P(trend) < 0.001). A similar significant trend was also observed associating TP53 mutations with increasing numbers of risk genotypes for XRCC1 399 QQ, XPC 939 QQ, ERCC4 415 QQ and XPC 499 AA (P(trend) < 0.001). Our pilot data suggest that nsSNPs of multiple DNA repair pathways are associated with younger age at diagnosis and TP53 mutations in breast cancer and larger studies are warranted to further evaluate these associations.


Asunto(s)
Neoplasias de la Mama/genética , Reparación del ADN , Genes p53 , Mutación , Polimorfismo Genético , Adulto , Factores de Edad , Anciano , Índice de Masa Corporal , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Femenino , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Proteínas Nucleares/genética , Polimorfismo de Nucleótido Simple , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
10.
J Carcinog ; 10: 34, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22279419

RESUMEN

BACKGROUND: Aberrant expression of small noncoding endogenous RNA molecules known as microRNAs (miRNAs) is documented to occur in multiple cancer types including esophageal adencarcinoma (EAC) and its only known precursor, Barrett's esophagus (BE). Recent studies have linked dysregulation of specific miRNAs to histological grade, neoplastic progression and metastatic potential. MATERIALS AND METHODS: Herein, we present a summary of previously reported dysregulated miRNAs in BE and EAC tissues as well as EAC cell lines and evaluate a cranberry proanthocyanidin rich extract's (C-PAC) ability to modulate miRNA expression patterns of three human EAC cell lines (JHEso-Ad-1, OE33 and OE19). RESULTS: A review of 13 published studies revealed dysregulation of 87 miRNAs in BE and EAC tissues, whereas 52 miRNAs have been reported to be altered in BE or EAC cell lines, with 48% overlap with miRNA changes reported in tissues. We report for the first time C-PAC-induced modulation of five miRNAs in three EAC cell lines resulting in 26 validated gene targets and identification of key signaling pathways including p53, angiogenesis, T-cell activation and apoptosis. Additionally, mutiple cancer related networks were ideintified as modulated by C-PAC utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG), Protein Analysis Through Evolutionary Relationships (PANTHER), and MetaCore analysis tools. CONCLUSIONS: Study results support the cancer inhibitory potential of C-PAC is in part attributable to C-PAC's ability to modify miRNA profiles within EAC cells. A number of C-PAC-modulated miRNAs have been been identified as dysregulated in BE and EAC. Further insights into miRNA dysregulation and modulation by select cancer preventive agents will support improved targeted interventions in high-risk cohorts.

11.
Molecules ; 16(3): 2375-90, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21399574

RESUMEN

Cranberries are rich in bioactive constituents purported to enhance immune function, improve urinary tract health, reduce cardiovascular disease and more recently, inhibit cancer in preclinical models. However, identification of the cranberry constituents with the strongest cancer inhibitory potential and the mechanism associated with cancer inhibition by cranberries remains to be elucidated. This study investigated the ability of a proanthocyanidin rich cranberry fraction (PAC) to alter gene expression, induce apoptosis and impact the cell cycle machinery of human NCI-H460 lung cancer cells. Lung cancer is the leading cause of cancer-related deaths in the United States and five year survival rates remain poor at 16%. Thus, assessing potential inhibitors of lung cancer-linked signaling pathways is an active area of investigation.


Asunto(s)
Apoptosis/efectos de los fármacos , División Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/patología , Proantocianidinas/farmacología , Vaccinium macrocarpon/química , Línea Celular Tumoral , Citometría de Flujo , Humanos , Neoplasias Pulmonares/genética , Reacción en Cadena de la Polimerasa
12.
JCI Insight ; 6(1)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33290281

RESUMEN

Esophageal adenocarcinoma (EAC) develops from Barrett's esophagus (BE), a chronic inflammatory state that can progress through a series of transformative dysplastic states before tumor development. While molecular and genetic changes of EAC tumors have been studied, immune microenvironment changes during Barrett's progression to EAC remain poorly understood. In this study, we identify potential immunologic changes that can occur during BE-to-EAC progression. RNA sequencing (RNA-Seq) analysis on tissue samples from EAC patients undergoing surgical resection demonstrated that a subset of chemokines and cytokines, most notably IL6 and CXCL8, increased during BE progression to EAC. xCell deconvolution analysis investigating immune cell population changes demonstrated that the largest changes in expression during BE progression occurred in M2 macrophages, pro-B cells, and eosinophils. Multiplex immunohistochemical staining of tissue microarrays showed increased immune cell populations during Barrett's progression to high-grade dysplasia. In contrast, EAC tumor sections were relatively immune poor, with a rise in PD-L1 expression and loss of CD8+ T cells. These data demonstrate that the EAC microenvironment is characterized by poor cytotoxic effector cell infiltration and increased immune inhibitory signaling. These findings suggest an immunosuppressive microenvironment, highlighting the need for further studies to explore immune modulatory therapy in EAC.


Asunto(s)
Adenocarcinoma/inmunología , Esófago de Barrett/inmunología , Neoplasias Esofágicas/inmunología , Adenocarcinoma/genética , Adenocarcinoma/patología , Esófago de Barrett/genética , Esófago de Barrett/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Progresión de la Enfermedad , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Humanos , Tolerancia Inmunológica , Inmunohistoquímica , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Macrófagos/inmunología , Macrófagos/patología , RNA-Seq , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
13.
Nutrients ; 12(9)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872541

RESUMEN

Blacks experience disproportionate head and neck cancer (HNC) recurrence and mortality compared to Whites. Overall, vitamin D status is inversely associated to HNC pointing to a potential protective linkage. Although hypovitaminosis D in Blacks is well documented it has not been investigated in Black HNC patients. Thus, we conducted a prospective pilot study accessing vitamin D status in newly diagnosed HNC patients stratified by race and conducted in vitro studies to investigate mechanisms associated with potential cancer inhibitory effects of vitamin D. Outcome measures included circulating levels of vitamin D, related nutrients, and risk factor characterization as well as dietary and supplemental estimates. Vitamin D-based in vitro assays utilized proteome and microRNA (miR) profiling. Nineteen patients were enrolled, mean circulating vitamin D levels were significantly reduced in Black compared to White HNC patients, 27.3 and 20.0 ng/mL, respectively. Whites also supplemented vitamin D more frequently than Blacks who had non-significantly higher vitamin D from dietary sources. Vitamin D treatment of HNC cell lines revealed five significantly altered miRs regulating genes targeting multiple pathways in cancer based on enrichment analysis (i.e., negative regulation of cell proliferation, angiogenesis, chemokine, MAPK, and WNT signaling). Vitamin D further altered proteins involved in cancer progression, metastasis and survival supporting a potential role for vitamin D in targeted cancer prevention.


Asunto(s)
Negro o Afroamericano/estadística & datos numéricos , Neoplasias de Cabeza y Cuello/sangre , Neoplasias de Cabeza y Cuello/epidemiología , Disparidades en el Estado de Salud , Vitamina D/sangre , Población Blanca/estadística & datos numéricos , Quimioprevención/métodos , Suplementos Dietéticos , Femenino , Florida/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Vitaminas/sangre
14.
Cancer Treat Res Commun ; 25: 100210, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32987287

RESUMEN

INTRODUCTION: Melanoma is an aggressive form of skin cancer for which there are no effective drugs for prolonged treatment. The existing kinase inhibitor antiglycolytic drugs (B-Raf serine/threonine kinase or BRAF inhibitors) are effective for a short time followed by a rapid onset of drug resistance. PRESENTATION OF CASE: Here, we show that a mitochondria-targeted analog of magnolol, Mito-magnolol (Mito-MGN), inhibits oxidative phosphorylation (OXPHOS) and proliferation of melanoma cells more potently than untargeted magnolol. Mito-MGN also inhibited tumor growth in murine melanoma xenografts. Mito-MGN decreased mitochondrial membrane potential and modulated energetic and mitophagy signaling proteins. DISCUSSION: Results indicate that Mito-MGN is significantly more potent than the FDA-approved OXPHOS inhibitor in inhibiting proliferation of melanoma cells. CONCLUSION: These findings have implications in the treatment of melanomas with enhanced OXPHOS status due to metabolic reprogramming or drug resistance.


Asunto(s)
Autofagia/genética , Compuestos de Bifenilo/uso terapéutico , Lignanos/uso terapéutico , Melanoma/tratamiento farmacológico , Mitofagia/genética , Óxido Nítrico Sintasa/uso terapéutico , Fosforilación Oxidativa/efectos de los fármacos , Animales , Compuestos de Bifenilo/farmacología , Línea Celular Tumoral , Citoprotección , Humanos , Lignanos/farmacología , Ratones , Ratones Desnudos , Óxido Nítrico Sintasa/farmacología
15.
Autophagy ; 16(4): 659-671, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31232177

RESUMEN

The role of circular RNA in cancer is emerging. A newly reported circular RNA HIPK3 (circHIPK3) is critical in cell proliferation of various cancer types, although its role in non-small cell lung cancer (NSCLC), has yet to be elucidated. Our results provided evidence that silencing of circHIPK3 significantly impaired cell proliferation, migration, invasion and induced macroautophagy/autophagy. Mechanistically, we uncovered that autophagy was induced upon loss of circHIPK3 via the MIR124-3p-STAT3-PRKAA/AMPKa axis in STK11 mutant lung cancer cell lines (A549 and H838). STAT3 abrogation as well as transfection with a MIR124-3p mimic, recapitulated the induction of autophagy. We also demonstrated antagonistic regulation on autophagy between circHIPK3 and linear HIPK3 (linHIPK3). We therefore propose that the ratio between circHIPK3 and linHIPK3 (C:L ratio) may reflect autophagy levels in cancer cells. We observed that a high C:L ratio (>0.49) was an indicator of poor survival, especially in advanced-stage NSCLC patients. These results support that circHIPK3 is a key autophagy regulator in a subset of lung cancer and has potential clinical use as a prognostic factor. The circular RNA HIPK3 (circHIPK3) functions as an oncogene and autophagy regulator may potential use as a prognostic marker and therapeutic target in lung cancer.Abbreviations 3-MA: 3-methyladenine; AMPK: AMP-activated protein kinase; ATG7: autophagy related 7; Baf-A: bafilomycin A1; BECN1: beclin 1; circHIPK3: circular HIPK3; CQ: chloroquine; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HIPK3: homeodomain interacting protein kinase 3; IL6R: interleukin 6 receptor; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; NSCLC: non-small cell lung cancer; RFP: red fluorescent protein; RPS6KB1/S6K: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; STAT3: signal transducer and activator of transcription 3; STK11: serine/threonine kinase 11.


Asunto(s)
Autofagia/fisiología , Neoplasias Pulmonares/genética , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Circular/metabolismo , Transducción de Señal , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
16.
Nutr Cancer ; 61(2): 216-24, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19235037

RESUMEN

Plant foods and associated nutrients may impact prostate cancer (PC) risk and survival. Therefore, we compared dietary intake, mainly plant food groups among 382 controls and 478 PC cases (373 incident and 105 prevalent cases). Caucasian controls had significantly higher daily servings of vegetables (3.4 vs. 2.5, P= 0.002) and fruits and/or fruit juices (1.6 vs. 1.3, P = 0.02) compared to African American controls. In Caucasians, incident cases reported lower intake of fiber, vitamin C, vitamin A, alpha -carotene, beta -carotene, cryptoxanthin, folate, genistein, daidzein, and fruits and/or fruit juice than controls and/or prevalent cases. In African Americans, incident cases had lower intake of alpha -carotene compared to controls and prevalent cases. Reduced PC risk was associated with the highest tertile of cryptoxanthin (OR = 0.51; 95% CI = 0.35-0.75), fiber (OR = 0.56; 95% CI = 0.35-0.89), vitamin C (OR = 0.60; 95% CI = 0.41-0.88), and fruits and/or fruit juices (OR = 0.46; 95% CI = 0.31-0.68), with significant linear trends. Increased risk of PC was associated with the highest tertile of protein (OR = 1.99; 95% CI = 1.05-3.79) and daily servings of grains (OR = 1.99; 95% CI = 1.23-3.22) with significant linear trends. In summary, we demonstrate racial/ethnic differences in dietary intake of plant foods. The significantly higher consumption of protective dietary constituents among prevalent cases compared to incident cases suggests that PC survivors may be amenable to dietary change.


Asunto(s)
Dieta , Plantas Comestibles , Neoplasias de la Próstata/epidemiología , Vitaminas/administración & dosificación , Anciano , Población Negra , Registros de Dieta , Proteínas en la Dieta/administración & dosificación , Grano Comestible , Flavonoides/administración & dosificación , Frutas , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata/prevención & control , Encuestas y Cuestionarios , Verduras , Población Blanca
17.
Clin Cancer Res ; 14(8): 2421-30, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18413833

RESUMEN

PURPOSE: The aim of this study was to assess the effects of topical application of a 10% (w/w) freeze-dried black raspberry (FBR) gel on oral intraepithelial neoplasia (IEN) variables that included histologic diagnoses and loss of heterozygosity (LOH) indices. Microsatellite instability and/or LOH at tumor suppressor gene-associated chromosomal loci have been associated with a higher risk for oral IEN progression to oral squamous cell carcinoma. Previously, our laboratories have shown that FBRs are well tolerated and possess potent antioxidant, apoptotic, and differentiation-inducing properties. EXPERIMENTAL DESIGN: Each participant with IEN served as their own internal control. Before treatment, all lesions were photographed, and lesional tissue was hemisected to obtain a pretreatment diagnosis and baseline biochemical and molecular variables. Gel dosing (0.5 g applied four times daily for 6 weeks) was initiated 1 week after the initial biopsy. Genomic DNA was isolated from laser-captured basilar and suprabasilar surface epithelial cells followed by PCR amplification using primer sets that targeted known and presumed tumor suppressor gene loci associated with INK4a/ARF, p53, and FHIT. Allelic imbalance was determined by sequence analysis using normal participant tissues to establish microsatellite marker peak patterns and allele sizes. RESULTS: Confirming earlier phase I data, none of the 27 participants developed FBR gel-associated toxicities. Furthermore, our results show histologic regression in a subset of patients as well as statistically significant reduction in LOH at tumor suppressor gene-associated loci. CONCLUSIONS: These preliminary data suggest that further evaluation of berry gels for oral IEN chemoprevention is warranted.


Asunto(s)
Frutas , Pérdida de Heterocigocidad , Neoplasias de la Boca/tratamiento farmacológico , Fitoterapia , Lesiones Precancerosas/tratamiento farmacológico , Administración Tópica , Adulto , Anciano , Femenino , Estudios de Seguimiento , Geles , Genes Supresores de Tumor , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología
18.
Cancer Res ; 67(13): 6484-92, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17616710

RESUMEN

There is little information on early molecular events in the development of N-nitrosomethylbenzylamine (NMBA)-induced rat esophageal tumorigenesis and of the effects of chemopreventive agents on these events. In this study, we identified genes in rat esophagus that were differentially expressed in response to short-term NMBA treatment and modulated by cotreatment with phenylethyl isothiocyanate (PEITC). Rats were fed AIN-76A diet or AIN-76A diet containing PEITC for 3 weeks. During the 3rd week of dietary treatment, they were administered three s.c. doses of NMBA (0.5 mg/kg body weight). Rats were sacrificed 24 h after the last treatment; esophagi were excised and processed for histologic grading, microarray and real-time PCR analysis. Histopathologic analysis showed that treatment of rats with PEITC had a protective effect on NMBA-induced preneoplastic lesions in the rat esophagus. We identified 2,261 genes that were differentially expressed in the NMBA-treated versus control esophagi and 1,936 genes in the PEITC + NMBA versus NMBA-treated esophagi. The intersection of these two sets resulted in the identification of 1,323 genes in NMBA-treated esophagus, the vast majority of which were modulated by PEITC to near-normal levels of expression. Measured changes in the expression levels of eight selected genes were validated using real-time PCR. Results from 12 microarrays indicated that PEITC treatment had a genome-wide modulating effect on NMBA-induced gene expression. Samples obtained from animals treated with PEITC alone or cotreated with PEITC + NMBA were more similar to controls than to samples treated with NMBA alone.


Asunto(s)
Anticarcinógenos/farmacología , Dimetilnitrosamina/análogos & derivados , Neoplasias Esofágicas/etiología , Esófago/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Isotiocianatos/farmacología , Animales , Peso Corporal , Carcinógenos , Dimetilnitrosamina/toxicidad , Genoma , Análisis de Secuencia por Matrices de Oligonucleótidos , Lesiones Precancerosas , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Cancer Epidemiol Biomarkers Prev ; 17(11): 3179-87, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18990760

RESUMEN

Proliferative verrucous leukoplakia (PVL) represents a rare but highly aggressive form of oral leukoplakia with > 70% progressing to malignancy. Yet, PVL remains biologically and genetically poorly understood. This study evaluated the cell cycle regulatory genes, p16INK4a and p14ARF, for homozygous deletion, loss of heterozygosity, and mutation events in 20 PVL cases. Deletion of exon 1beta, 1alpha, or 2 was detected in 40%, 35%, and 0% of patients, respectively. Deletions of exons 1alpha and 1beta markedly exceed levels reported in non-PVL dysplasias and approximate or exceed levels reported in oral squamous cell carcinomas. Allelic imbalance was assessed for markers reported to be highly polymorphic in squamous cell carcinomas and in oral dysplasias. Loss of heterozygosity was detected in 35.3%, 26.3%, and 45.5% of PVLs for the markers IFNalpha, D9S1748, and D9S171, respectively. INK4a and ARF sequence alterations were detected in 20% and 10% of PVL lesions, accordingly. These data show, for the first time, that both p16INK4a and p14ARF aberrations are common in oral verrucous leukoplakia; however, the mode and incidence of inactivation events differ considerably from those reported in non-PVL oral premalignancy. Specifically, concomitant loss of p16INK4a and p14ARF occurred in 45% of PVL patients greatly exceeding loss reported in non-PVL dysplastic oral epithelium (15%). In addition, p14ARF exon 1beta deletions were highly elevated in PVLs compared with non-PVL dysplasias. These data illustrate that molecular alterations, even within a specific genetic region, are associated with distinct histologic types of oral premalignancy, which may affect disease progression, treatment strategies, and ultimately patient prognosis.


Asunto(s)
Carcinoma de Células Escamosas/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Leucoplasia Bucal/genética , Proteína p14ARF Supresora de Tumor/genética , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Biopsia , Distribución de Chi-Cuadrado , Cromosomas Humanos Par 9 , Exones , Femenino , Eliminación de Gen , Humanos , Técnicas para Inmunoenzimas , Leucoplasia Bucal/patología , Pérdida de Heterocigocidad , Masculino , Persona de Mediana Edad , Mutación , Reacción en Cadena de la Polimerasa , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología
20.
J Agric Food Chem ; 56(3): 676-80, 2008 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-18211022

RESUMEN

The occurrence of esophageal adenocarcinoma and its only recognized precursor lesion, Barrett's esophagus, has rapidly increased during the past three decades. The precise reason for the rise remains to be elucidated, but increasing rates have been linked to multiple nutritional factors. Plant-based diets have generally been associated with a reduction of risk for esophageal adenocarcinoma and those of animal origin with risk escalation. Moreover, a number of recent in vitro and limited in vivo investigations have reported that cranberry extracts affect multiple cancer-associated processes in breast, colon, prostate, and other cancer cell lines of epithelial origin. Thus, this study sought to investigate the chemopreventive potential of a cranberry proanthocyanidin rich extract (PAC) in SEG-1 human esophageal adenocarcinoma (EAC) cells. PAC pretreatment significantly inhibited the viability and proliferation of EAC cells in a time- and dose-dependent manner. Moreover, PAC (50 microg/mL) significantly inhibited acid-induced cell proliferation of SEG-1 cells. PAC treatment induced cell cycle arrest at the G1 checkpoint and significantly reduced the percentage of SEG-1 cells in S-phase following 24 and 48 h of exposure. PAC treatment also resulted in significant induction of apoptosis. Thus, PAC modulates cell cycle regulation, aberrant proliferation, and apoptosis, all key biological processes altered during progression to esophageal adenocarcinoma. These findings support that further mechanistic studies are warranted to more fully elucidate the inhibitory potential of PAC against esophageal cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , División Celular/efectos de los fármacos , Neoplasias Esofágicas/patología , Frutas/química , Proantocianidinas/farmacología , Vaccinium macrocarpon/química , Adenocarcinoma/patología , Línea Celular Tumoral , Humanos , Concentración de Iones de Hidrógeno , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA