RESUMEN
Varying the electrode potential rearranges the charges in the double layer (DL) of an electrochemical interface by a resistive-capacitive current response. The capacitances of such charge relocations are frequently used in the research community to estimate electrochemical active surface areas (ECSAs), yet the reliability of this methodology is insufficiently examined. Here, the relation of capacitances and ECSAs is critically assessed with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) data on polished (Au, Ti, Ru, Pt, Ni, glassy carbon, graphite plate) and porous (carbon fleeces) electrodes. By investigating this variety of electrodes, the frequency-dependencies observed in the measured capacitances are shown to arise from the inherent resistive-capacitive DL response, charge transfer reactions, and resistively damped capacitive currents in microstructures (such as pores, pinholes, or cracks). These frequency-dependencies are typically overlooked when capacitances are related to ECSAs. The capacitance at the specimen-characteristic relaxation frequency of the resistive-capacitive DL response is proposed as a standardized capacitance-metric to estimate ECSAs. In 1 M perchloric acid, the polished gold electrode and the high-surface area carbon fleeces show ratios of capacitance-metric over surface-area of around 3.7 µF cm-2. Resistively damped currents in microstructures and low-conducting oxide layers are shown to complicate trustworthy capacitance-based estimations of ECSAs. In the second part of this study, advanced equivalent circuits models to describe the measured EIS and CV responses are presented.
RESUMEN
The effect of two atmospheric post-treatment conditions directly after the KOH activation of polyacrylonitrile-based nanofibres is studied in this work. As post-treatment different N2 : O2 flow conditions, namely high O2-flow and low O2-flow, are applied and their impact on occurring reactions and carbon nanofibres' properties is studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Raman spectroscopy, elemental analysis and CO2 and Ar gas adsorption. At high O2-flow conditions a pyrophoric effect was observed on the KOH-activated carbon nanofibers. Based on the obtained results from the TGA and DSC the pyrophoric effect is attributed to the oxidation reactions of metallic potassium formed during the KOH activation process and a consequent carbon combustion reaction. Suppression of this pyrophoric effect is achieved using the low O2-flow conditions due to a lower heat formation of the potassium oxidation and the absence of carbon combustion. Compared to the high O2-flow samples no partial destruction of the carbon nanofibers is observed in the SEM images. The determination of the adsorption isotherms, the surface area, the pore size distribution and the isosteric enthalpies of adsorption show the superior properties under low O2-flow conditions. The present micropore volume is increased from 0.424 cm3 g-1 at high O2-flow to 0.806 cm3 g-1 for low O2-flow samples, resulting in an increase of CO2 adsorption capacity of 38% up to 6.6 mmol g-1 at 1 bar. This significant improvement clearly points out the importance of considering highly exothermic potassium oxidation reactions and possible post-treatment strategies when applying KOH activation to electrospun carbon nanofiber materials.
RESUMEN
An exact understanding of the conductivity of individual fibers and their networks is crucial to tailor the overall macroscopic properties of polyacrylonitrile (PAN)-based carbon nanofibers (CNFs). Therefore, microelectrical properties of CNF networks and nanoelectrical properties of individual CNFs, carbonized at temperatures from 600 to 1000 °C, are studied by means of conductive atomic force microscopy (C-AFM). At the microscale, the CNF networks show good electrical interconnections enabling a homogeneously distributed current flow. The network's homogeneity is underlined by the strong correlation of macroscopic conductivities, determined by the four-point-method, and microscopic results. Both, microscopic and macroscopic electrical properties, solely depend on the carbonization temperature and the exact resulting fiber structure. Strikingly, nanoscale high-resolution current maps of individual CNFs reveal a large highly resistive surface fraction, representing a clear limitation. Highly resistive surface domains are either attributed to disordered highly resistive carbon structures at the surface or the absence of electron percolation paths in the bulk volume. With increased carbonization temperature, the conductive surface domains grow in size resulting in a higher conductivity. This work contributes to existing microstructural models of CNFs by extending them by electrical properties, especially electron percolation paths.
RESUMEN
The development of highly selective adsorbents for CO2 is a key part to advance separation by adsorption as a viable technique for CO2 capture. In this work, polyacrylonitrile (PAN) based carbon nanofibers (CNFs) were investigated for their CO2 separation capabilities using dynamic gas adsorption. The CNFs were prepared by electrospinning and subsequent carbonization at various temperatures ranging from 600 to 1000 °C. A thorough investigation of the CO2 /N2 selectivity resulted in measured values of 53-106 at 1â bar and 25 °C on CNFs carbonized at 600, 700, or 800 °C. Moreover, the selectivity increased with lower measurement temperatures and lower CO2 partial pressures, reaching values up to 194. Further analysis revealed high long-term stability with no degradation over 300â cycles and fast adsorption kinetics for CNFs carbonized at 600 or 700 °C. These excellent properties make PAN-based CNFs carbonized at 600 or 700 °C promising candidates for the capture of CO2 .
RESUMEN
Polyacrylonitrile-based carbon nanofibers (PAN-based CNFs) have great potential to be used for carbon dioxide (CO2) capture due to their excellent CO2 adsorption properties. The porous structure of PAN-based CNFs originates from their turbostratic structure, which is composed of numerous disordered stacks of graphitic layers. During the carbonization process, the internal structure is arranged toward the ordered graphitic structure, which significantly influences the gas adsorption properties of PAN-based CNFs. However, the relation between structural transformation and CO2 capture is still not clear enough to tune the PAN-based CNFs. In this paper, we show that, with increasing carbonization temperature, the arrangement of the PAN-based CNF's structure along the stack and lateral directions takes place independently: gradually aligning and merging along the stack direction and enlarging along the lateral direction. Further, we correlate the structural arrangement and the CO2 adsorption properties of the PAN-based CNFs to propose a comprehensive structural mechanism. This mechanism provides the knowledge to understand and tailor the gas adsorption properties of PAN-based CNFs.
RESUMEN
Carbon nanofibers (CNFs) derived from electrospun polyacrylonitrile (PAN) were investigated with respect to their gas adsorption properties. By employing CO2 adsorption measurements, it is shown that the adsorption capacity and selectivity of the fibers can be tailored by means of the applied carbonization temperature. General pore properties of the CNFs were identified by Ar adsorption measurements, whereas CO2 adsorption measurements provided information about the ultramicroporosity, adsorption energies, and adsorption capacities. Ideal adsorbed solution theory (IAST) selectivities under practically relevant conditions were determined by evaluation of single-component data for N2 and CO2 . Especially for low carbonization temperatures, the CNFs exhibit very good low-pressure adsorption performance and excellent CO2 /N2 IAST selectivities of 350 at 20â mbar and 132 at 1â bar, which are attributed to a molecular-sieve effect in very narrow slit pores. These IAST selectivities are some of the highest values for carbon materials reported in the literature so far and the highest IAST selectivities for as-prepared, non-post-treated carbon ever.