Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961299

RESUMEN

The electronic properties of crystals can be manipulated by superimposing spatially periodic electric, magnetic or structural modulations. Long-wavelength modulations incommensurate with the atomic lattice are particularly interesting1, exemplified by recent advances in two-dimensional (2D) moiré materials2,3. Bulk van der Waals (vdW) superlattices4-8 hosting 2D interfaces between minimally disordered layers represent scalable bulk analogues of artificial vdW heterostructures and present a complementary venue to explore incommensurately modulated 2D states. Here we report the bulk vdW superlattice SrTa2S5 realizing an incommensurate one-dimensional (1D) structural modulation of 2D transition metal dichalcogenide (TMD) H-TaS2 layers. High-quality electronic transport in the H-TaS2 layers, evidenced by quantum oscillations, is made anisotropic by the modulation and exhibits commensurability oscillations paralleling lithographically modulated 2D systems9-11. We also find unconventional, clean-limit superconductivity in SrTa2S5 with a pronounced suppression of interlayer relative to intralayer coherence. The in-plane magnetic field dependence of interlayer critical current, together with electron diffraction from the structural modulation, suggests superconductivity12-14 in SrTa2S5 is spatially modulated and mismatched between adjacent TMD layers. With phenomenology suggestive of pair-density wave superconductivity15-17, SrTa2S5 may present a pathway for microscopic evaluation of this unconventional order18-21. More broadly, SrTa2S5 establishes bulk vdW superlattices as versatile platforms to address long-standing predictions surrounding modulated electronic phases in the form of nanoscale vdW devices12,13 to macroscopic crystals22,23.

2.
Nature ; 599(7883): 51-56, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34732867

RESUMEN

Charged particles subjected to magnetic fields form Landau levels (LLs). Originally studied in the context of electrons in metals1, fermionic LLs continue to attract interest as hosts of exotic electronic phenomena2,3. Bosonic LLs are also expected to realize novel quantum phenomena4,5, but, apart from recent advances in synthetic systems6,7, they remain relatively unexplored. Cooper pairs in superconductors-composite bosons formed by electrons-represent a potential condensed-matter platform for bosonic LLs. Under certain conditions, an applied magnetic field is expected to stabilize an unusual superconductor with finite-momentum Cooper pairs8,9 and exert control over bosonic LLs10-13. Here we report thermodynamic signatures, observed by torque magnetometry, of bosonic LL transitions in the layered superconductor Ba6Nb11S28. By applying an in-plane magnetic field, we observe an abrupt, partial suppression of diamagnetism below the upper critical magnetic field, which is suggestive of an emergent phase within the superconducting state. With increasing out-of-plane magnetic field, we observe a series of sharp modulations in the upper critical magnetic field that are indicative of distinct vortex states and with a structure that agrees with predictions for Cooper pair LL transitions in a finite-momentum superconductor10-14. By applying Onsager's quantization rule15, we extract the momentum. Furthermore, study of the fermionic LLs shows evidence for a non-zero Berry phase. This suggests opportunities to study bosonic LLs, topological superconductivity, and their interplay via transport16, scattering17, scanning probe18 and exfoliation techniques19.

3.
Phys Rev Lett ; 124(4): 047002, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32058775

RESUMEN

GeTe is a chemically simple IV-VI semiconductor which bears a rich plethora of different physical properties induced by doping and external stimuli. Here, we report a superconductor-semiconductor-superconductor transition controlled by finely-tuned In doping. Our results reveal the existence of a critical doping concentration x_{c}=0.12 in Ge_{1-x}In_{x}Te, where various properties, including structure, resistivity, charge carrier type, and the density of states, take either an extremum or change their character. At the same time, we find indications of a change in the In-valence state from In^{3+} to In^{1+} with increasing x by core-level photoemission spectroscopy, suggesting that this system is a new promising playground to probe valence fluctuations and their possible impact on structural, electronic, and thermodynamic properties of their host.

4.
Phys Rev Lett ; 110(21): 217601, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23745936

RESUMEN

Quasiparticle dynamics on the topological surface state of Bi(2(3), Bi(2)Te(3), and superconducting Cu(x)Bi(2)Se(3) are studied by 7 eV laser-based angle resolved photoemission spectroscopy. We find strong mode couplings in the Dirac-cone surface states at energies of ~3 and ~15-20 meV associated with an exceptionally large coupling constant λ of ~3, which is one of the strongest ever reported for any material. This result is compatible with the recent observation of a strong Kohn anomaly in the surface phonon dispersion of Bi(2)Se(3), but it appears that the theoretically proposed "spin-plasmon" excitations realized in helical metals are also playing an important role. Intriguingly, the ~3 meV mode coupling is found to be enhanced in the superconducting state of Cu(x)Bi(2)Se(3).

5.
Phys Rev Lett ; 106(12): 127004, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21517345

RESUMEN

The superconductivity recently found in the doped topological insulator Cu(x)Bi2Se3 offers a great opportunity to search for a topological superconductor. We have successfully prepared a single-crystal sample with a large shielding fraction and measured the specific-heat anomaly associated with the superconductivity. The temperature dependence of the specific heat suggests a fully gapped, strong-coupling superconducting state, but the BCS theory is not in full agreement with the data, which hints at a possible unconventional pairing in Cu(x)Bi2Se3. Also, the evaluated effective mass of 2.6m(e) (m(e) is the free electron mass) points to a large mass enhancement in this material.

6.
Phys Rev Lett ; 107(21): 217001, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-22181913

RESUMEN

A topological superconductor (TSC) is characterized by the topologically protected gapless surface state that is essentially an Andreev bound state consisting of Majorana fermions. While a TSC has not yet been discovered, the doped topological insulator Cu(x)Bi(2)Se(3), which superconducts below ∼3 K, has been predicted to possess a topological superconducting state. We report that the point-contact spectra on the cleaved surface of superconducting Cu(x)Bi(2)Se(3) present a zero-bias conductance peak (ZBCP) which signifies unconventional superconductivity. Theoretical considerations of all possible superconducting states help us conclude that this ZBCP is due to Majorana fermions and gives evidence for a topological superconductivity in Cu(x)Bi(2)Se(3). In addition, we found an unusual pseudogap that develops below ∼20 K and coexists with the topological superconducting state.

7.
Phys Rev Lett ; 106(21): 216803, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21699328

RESUMEN

We have performed spin- and angle-resolved photoemission spectroscopy of Bi(2)Te(3) and present the first direct evidence for the existence of the out-of-plane spin component on the surface state of a topological insulator. We found that the magnitude of the out-of-plane spin polarization on a hexagonally deformed Fermi surface of Bi(2)Te(3) reaches maximally 25% of the in-plane counterpart, while such a sizable out-of-plane spin component does not exist in the more circular Fermi surface of TlBiSe(2), indicating that the hexagonal deformation of the Fermi surface is responsible for the deviation from the ideal helical spin texture. The observed out-of-plane polarization is much smaller than that expected from the existing theory, suggesting that an additional ingredient is necessary for correctly understanding the surface spin polarization in Bi(2)Te(3).

8.
Nat Commun ; 12(1): 3180, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039969

RESUMEN

Spin-orbit coupling (SOC) is pivotal for various fundamental spin-dependent phenomena in solids and their technological applications. In semiconductors, these phenomena have been so far studied in relatively weak electron-electron interaction regimes, where the single electron picture holds. However, SOC can profoundly compete against Coulomb interaction, which could lead to the emergence of unconventional electronic phases. Since SOC depends on the electric field in the crystal including contributions of itinerant electrons, electron-electron interactions can modify this coupling. Here we demonstrate the emergence of the SOC effect in a high-mobility two-dimensional electron system in a simple band structure MgZnO/ZnO semiconductor. This electron system also features strong electron-electron interaction effects. By changing the carrier density with Mg-content, we tune the SOC strength and achieve its interplay with electron-electron interaction. These systems pave a way to emergent spintronic phenomena in strong electron correlation regimes and to the formation of quasiparticles with the electron spin strongly coupled to the density.

9.
Science ; 370(6513): 231-236, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33033221

RESUMEN

Advances in low-dimensional superconductivity are often realized through improvements in material quality. Apart from a small group of organic materials, there is a near absence of clean-limit two-dimensional (2D) superconductors, which presents an impediment to the pursuit of numerous long-standing predictions for exotic superconductivity with fragile pairing symmetries. We developed a bulk superlattice consisting of the transition metal dichalcogenide (TMD) superconductor 2H-niobium disulfide (2H-NbS2) and a commensurate block layer that yields enhanced two-dimensionality, high electronic quality, and clean-limit inorganic 2D superconductivity. The structure of this material may naturally be extended to generate a distinct family of 2D superconductors, topological insulators, and excitonic systems based on TMDs with improved material properties.

10.
Sci Rep ; 6: 25748, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27160657

RESUMEN

Cross-control of a material property - manipulation of a physical quantity (e.g., magnetisation) by a nonconjugate field (e.g., electrical field) - is a challenge in fundamental science and also important for technological device applications. It has been demonstrated that magnetic properties can be controlled by electrical and optical stimuli in various magnets. Here we find that heat-treatment allows the control over two competing magnetic phases in the Mn-doped polar semiconductor GeTe. The onset temperatures Tc of ferromagnetism vary at low Mn concentrations by a factor of five to six with a maximum Tc ≈ 180 K, depending on the selected phase. Analyses in terms of synchrotron x-ray diffraction and energy dispersive x-ray spectroscopy indicate a possible segregation of the Mn ions, which is responsible for the high-Tc phase. More importantly, we demonstrate that the two states can be switched back and forth repeatedly from either phase by changing the heat-treatment of a sample, thereby confirming magnetic phase-change-memory functionality.

11.
Phys Rev Lett ; 95(9): 097203, 2005 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-16197245

RESUMEN

We report on the magnetic, thermodynamic, and optical properties of the quasi-one-dimensional quantum antiferromagnets TiOCl and TiOBr, which have been discussed as spin-Peierls compounds. The observed deviations from canonical spin-Peierls behavior, e.g., the existence of two distinct phase transitions, have been attributed previously to strong orbital fluctuations. This can be ruled out by our optical data of the orbital excitations. We show that the frustration of the interchain interactions in the bilayer structure gives rise to incommensurate order with a subsequent lock-in transition to a commensurate dimerized state. In this way, a single driving force, the spin-Peierls mechanism, induces two separate transitions.

12.
Phys Rev Lett ; 95(26): 267403, 2005 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-16486403

RESUMEN

The crystal structure of Ca(2-x)Sr(x)RuO(4) with 0.2 < or = x < or = 1.0 has been studied by diffraction techniques and by high resolution capacitance dilatometry as a function of temperature and magnetic field. Upon cooling in zero magnetic field, the crystal structure and the octahedra shrink along the c direction and elongate in the a and b planes, whereas the opposite occurs upon cooling at high field (x = 0.2 and 0.5). These findings yield evidence for an orbital rearrangement driven by temperature and magnetic field, which accompanies the metamagnetic transition at low temperature. The temperature and magnetic-field dependencies are found to be governed by the same energy scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA