RESUMEN
BACKGROUND: The use of rapeseed protein for human nutrition is primarily limited by its strong bitterness, which is why the key bitter compound, kaempferol 3-O-(2â´-O-sinapoyl-ß-sophoroside), is enzymatically degraded. RESULTS: Mass spectrometry analyses of an extract from an untreated rapeseed protein isolate gave three signals for m/z 815 [M-H]. The predominant compound among the three compounds was confirmed as kaempferol-3-O-(2â´-O-sinapoyl-ß-sophoroside). Enzymatic hydrolysis of this key bitter compound was achieved using a sinapyl ester cleaving side activity of a ferulic acid esterase (FAE) from the basidiomycete Schizophyllum commune (ScoFAE). Recombinant ferulic acid esterases from Streptomyces werraensis (SwFAE) and from Pleurotus eryngii (PeFAE) possessed better cleavage activity towards methyl sinapate but did not hydrolyze the sinapyl ester linkage of the bitter kaempferol sophoroside. CONCLUSION: Kaempferol-3-O-(2â´-O-sinapoyl-ß-sophoroside) was successfully degraded by enzymatic treatment with ScoFAE, which may provide a means to move the status of rapeseed protein from feed additive to food ingredient. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Brassica napus , Brassica rapa , Humanos , Hidrólisis , Quempferoles , GustoRESUMEN
A combined system of a unique dye-decolorizing peroxidase (Ftr-DyP) and a laccase obtained from the basidiomycete Funalia trogii converted the precursor (+)-valencene completely to the high-value grapefruit flavour constituent (+)-nootkatone, reaching a concentration maximum of 1100 mg/L. In the presence of 1 mM Mn2+ and 2.5 mM p-coumaric acid, (+)-nootkatone was the predominating volatile product, and only traces of substrate and the nootkatols were detectable after 24 h. Hence, the two-enzyme-system reproduced the oxidizing activity observed before for the crude culture supernatant. The newly discovered Ftr-DyP was purified, sequenced and further characterized as a thermostable, non-glycosylated protein with a pH-optimum in the acidic range and a calculated mass of 52.3 kDa. Besides the typical activity of DyPs towards anthraquinone dyes, Ftr-DyP also oxidized Mn2+ and showed activity in the absence of hydrogen peroxide. Neither the DyP from Mycetinis scorodonius nor the manganese peroxidase from Nematoloma frowardii were able to replace Ftr-DyP in this reaction. A hypothetical reaction mechanism is presented.
Asunto(s)
Lacasa/metabolismo , Peroxidasa/metabolismo , Sesquiterpenos/metabolismo , Antraquinonas/metabolismo , Basidiomycota/enzimología , Colorantes/metabolismo , Oxidación-Reducción , Sesquiterpenos PolicíclicosRESUMEN
Buried explosive material, e.g., landmines, represent a severe issue for human safety all over the world. Most explosives consist of environmentally hazardous chemicals like 2,4,6-trinitrotoluene (TNT), carcinogenic 2,4-dinitrotoluene (2,4-DNT) and related compounds. Vapors leaking from buried landmines offer a detection marker for landmines, presenting an option to detect landmines without relying on metal detection. 2,4-Dinitrotoluene (DNT), an impurity and byproduct of common TNT synthesis, is a feasible detection marker since it is extremely volatile. We report on the construction of a wireless, handy and cost effective 2,4-dinitrotoluene biosensor combining recombinant bioluminescent bacterial cells and a compact, portable optical detection device. This biosensor could serve as a potential alternative to the current detection technique. The influence of temperature, oxygen and different immobilization procedures on bioluminescence were tested. Oxygen penetration depth in agarose gels was investigated, and showed that aeration with molecular oxygen is necessary to maintain bioluminescence activity at higher cell densities. Bioluminescence was low even at high cell densities and 2,4-DNT concentrations, hence optimization of different prototypes was carried out regarding radiation surface of the gels used for immobilization. These findings were applied to sensor construction, and 50 ppb gaseous 2,4-DNT was successfully detected.
Asunto(s)
Técnicas Biosensibles/instrumentación , Dinitrobencenos/aislamiento & purificación , Sustancias Explosivas/aislamiento & purificación , Tecnología Inalámbrica/instrumentación , Dinitrobencenos/toxicidad , Sustancias Explosivas/química , Gases/síntesis química , Gases/aislamiento & purificación , Humanos , Oxígeno/químicaRESUMEN
While the chemical composition of leaf and stem bark essential oils of the Chinese cinnamon, Cinnamomum cassia (L.) J. Presl, has been well investigated, little is known about the volatilom of its buds, which appeared recently on German markets. Soxhlet extracts of the commercial samples were prepared, fractionated using silica gel and characterised by gas chromatography-flame ionisation detector (GC-FID) for semi-quantification, by gas chromatography-mass spectrometry (GC-MS) for identification and by GC-FID/olfactometry for sensory evaluation. Cinnamaldehyde was the most abundant compound with concentrations up to 40 mg/g sample. In total, 36 compounds were identified and 30 were semi-quantified. The extracts contained mostly phenylpropanoids, mono- and sesquiterpene hydrocarbons and oxygenated derivatives. Because of the high abundance of cinnamaldehyde, the aldehyde fraction was removed from the extracts by adding hydrogen sulphite to improve both the detection of trace compounds and column chromatography. The aldehyde fraction was analysed by GC-MS separately. The highest flavour dilution factor of 316 was calculated for cinnamaldehyde. Other main sensory contributors were 2-phenylethanol and cinnamyl alcohol. This report provides the first GC-olfactometry data of a plant part of a Cinnamomum species. The strongly lignified C. cassia buds combine a high abundance of cinnamaldehyde with comparably low coumarin concentrations (<0.48 mg/g), and provide a large cinnamaldehyde depot for slow release applications.
Asunto(s)
Cinnamomum aromaticum/química , Extractos Vegetales/química , Compuestos Orgánicos Volátiles/química , Acroleína/análogos & derivados , Acroleína/análisis , Cinamatos/análisis , Cinamatos/química , Flores/química , Sesquiterpenos/análisis , Sesquiterpenos/químicaRESUMEN
The feruloyl esterase (FAE) gene EST1 from the basidiomycete Pleurotus sapidus was heterologously expressed in Escherichia coli and Pichia pastoris. Catalytically active recombinant Est1 was secreted using P. pastoris as a host. For expression in P. pastoris, the expression vector pPIC9K was applied. The EST1 gene was cloned with an N-terminal α-mating factor pre-pro sequence and expressed under the control of a methanol inducible alcohol oxidase 1 promotor. Est1 was purified to homogeneity using ion exchange and hydrophobic interaction chromatography. The recombinant Est1 showed optima at pH 5.0 and 50 °C, and released ferulic acid from saccharide esters and from the natural substrate destarched wheat bran. Substrate specificity profile and descriptor-based analysis demonstrated unique properties, showing that Est1 did not fit into the current FAE classification model. Transferuloylation synthesis of feruloyl-saccharide esters was proven for mono- and disaccharides.
Asunto(s)
Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Ácidos Cumáricos/química , Ésteres/química , Maltosa/biosíntesis , Maltosa/química , Pleurotus/enzimología , Hidrolasas de Éster Carboxílico/biosíntesis , Hidrolasas de Éster Carboxílico/aislamiento & purificación , Escherichia coli/genética , Ingeniería Genética , Vectores Genéticos/genética , Hidroxibenzoatos/metabolismo , Cinética , Pichia/genética , Pleurotus/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Triticum/químicaRESUMEN
A novel stain solving subtilisin-like peptidase (PPP1) was identified from the culture supernatant of the agaricomycete Pleurotus pulmonarius. It was purified to homogeneity using a sequence of preparative isoelectric focusing, anion exchange and size exclusion chromatography. Peptides were identified by ab initio sequencing (nLC-ESI-QTOF-MS/MS), characterizing the enzyme as a member of the subtilase family (EC 3.4.21.X). An expression system was established featuring the pPIC9K vector, an alternative Kozak sequence, the codon optimized gene ppp1 gene without the native signal sequence with C-terminal hexa-histidine tag, and Pichia pastoris GS115 as expression host. Intracellular active enzyme was obtained from cultivations in shake flasks and in a five liter bioreactor. With reaction optima of 40 °C and a pH > 8.5, considerable bleaching of pre-stained fabrics (blood, milk and India ink), and the possibility of larger-scale production, the heterologous enzyme is well suitable for detergent applications, especially at lower temperatures as part of a more energy- and cost-efficient washing process. Showing little sequence similarity to other subtilases, this unique peptidase is the first subtilisin-like peptidase from Basidiomycota, which has been functionally produced in Pichia pastoris.
Asunto(s)
Péptido Hidrolasas/biosíntesis , Pleurotus/enzimología , Secuencia de Aminoácidos , Reactores Biológicos , Electroforesis en Gel de Poliacrilamida , Genes Fúngicos , Péptido Hidrolasas/química , Pleurotus/genética , Homología de Secuencia de AminoácidoRESUMEN
An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of â¼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 µM, 64.1 µM, 72.5 µM, and 101.8 µM, respectively, and kcat/Km values of 25.83 mM(-1) s(-1), 7.63 mM(-1) s(-1), 3.83 mM(-1) s(-1) and 3.75 mM(-1) s(-1), respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme.
Asunto(s)
Hidrolasas de Éster Carboxílico/aislamiento & purificación , Hidrolasas de Éster Carboxílico/metabolismo , Ustilago/enzimología , Ácidos Cafeicos/metabolismo , Hidrolasas de Éster Carboxílico/química , Ácido Clorogénico/metabolismo , Cromatografía Liquida , Clonación Molecular , Ácidos Cumáricos/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , Electroforesis en Gel de Poliacrilamida , Expresión Génica , Concentración de Iones de Hidrógeno , Focalización Isoeléctrica , Cinética , Datos de Secuencia Molecular , Peso Molecular , Pichia/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , TemperaturaRESUMEN
The symmetrical structure of curcumin includes two 4-hydroxy-3-methoxyphenyl substructures. Laccase catalyzed formation of a phenol radical, radical migration and oxygen insertion at the benzylic positions can result in the formation of vanillin. As vanillin itself is a preferred phenolic substrate of laccases, the formation of vanillin oligomers and polymers is inevitable, once vanillin becomes liberated. To decelerate the oligomerization, one of the phenolic hydroxyl groups was protected via acetylation. Monoacetyl curcumin with an approximate molar yield of 49% was the major acetylation product, when a lipase from Candida antarctica (CAL) was used. In the second step, monoacetyl curcumin was incubated with purified laccases of various basidiomycete fungi in a biphasic system (diethyl ether/aqueous buffer). A laccase from Funalia trogii (LccFtr) resulted in a high conversion (46% molar yield of curcumin monoacetate) to vanillin acetate. The non-protected vanillin moiety reacted to a mixture of higher molecular products. In the third step, the protecting group was removed from vanillin acetate using a feruloyl esterase from Pleurotus eryngii (PeFaeA) (68% molar yield). Alignment of the amino acid sequences indicated that high potential laccases performed better in this mediator and cofactor-free reaction.
Asunto(s)
Benzaldehídos/química , Curcumina/química , Enzimas/química , Acetilación , Secuencia de Aminoácidos , Catálisis , Esterasas/química , Lacasa/química , Lipasa/química , Datos de Secuencia Molecular , Alineación de SecuenciaRESUMEN
The first heterologous expression of an iron-containing lipoxygenase from a basidiomycete in Pichia pastoris is reported. Five different expression constructs of the lipoxygenase gene LOX1 from Pleurotus sapidus were cloned and successfully transferred into P. pastoris SMD1168, but only one pPIC9K vector construct was functionally expressed. In this construct the vector-provided α-factor signal sequence was replaced by insertion of a second Kozak sequence between the signal sequence and the LOX1 gene. His(+) transformants were screened for their level of resistance to geneticin (G418). Lox1 was expressed under different culture conditions and purified using the N-terminal His-tag. Relative enzyme activity increased significantly 48h after methanol induction and was highest with 2mll(-1) inducer. The recombinant enzyme showed an optimal lipoxygenase activity at pH 7 and 30-35°C and a vmax like the wild-type enzyme.
Asunto(s)
Proteínas Fúngicas/metabolismo , Lipooxigenasa/metabolismo , Pichia/metabolismo , Pleurotus/genética , Proteínas Recombinantes/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Lipooxigenasa/química , Lipooxigenasa/genética , Lipooxigenasa/aislamiento & purificación , Espectrometría de Masas , Pichia/genética , Pleurotus/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Solubilidad , TemperaturaRESUMEN
The lipoxygenase LOX(Psa) 1 of Pleurotus sapidus, originally investigated because of its ability to oxidize (+)-valencene to the valuable grapefruit aroma (+)-nootkatone, was isolated from the peptidase-rich lyophilisate using a three-step purification scheme including preparative isoelectric focusing and chromatographic techniques. Nano-liquid chromatography electrospray ionization tandem mass spectrometry (nLC-ESI-MS/MS) of the purified enzyme and peptide mass fingerprint analysis gave 38 peptides of the lipoxygenase from P. sapidus. Nearly 50% of the 643 amino acids long sequence encoded by the cDNA was covered. Both terminal peptides of the native LOX(Psa) 1 were identified by de novo sequencing, and the postulated molecular mass of 72.5 kDa was confirmed. With linoleic acid as the substrate, the LOX(Psa)1 showed a specific activity of 113 U mg(-1) and maximal activity at pH 7.0 and 30 degrees C, respectively.
Asunto(s)
Lipooxigenasa/aislamiento & purificación , Pleurotus/enzimología , Secuencia de Aminoácidos , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Cromatografía Liquida , ADN Complementario , Electroforesis en Gel de Poliacrilamida , Lipooxigenasa/química , Lipooxigenasa/genética , Datos de Secuencia Molecular , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
The quality and harvest of essential oils depend on a large number of factors, most of which are hard to control in an open-field environment. Therefore, Basidiomycota have gained attention as a source for biotechnologically produced terpenoids. The basidiomycete Cerrena unicolor (Cun) was cultivated in submerged culture, and the production of sesquiterpenoids was analyzed via stir bar sorptive extraction (SBSE), followed by thermo-desorption gas chromatography coupled with mass spectrometry (TDS-GC-MS). Identification of aroma-active sesquiterpenoids was supported by GC, coupled with an olfactory detection port (ODP). Following the ideal of a circular bioeconomy, Cun was submerged (up-scalable) cultivated, and supplemented with a variety of food industrial side-streams. The effects of the different supplementations and of pure fatty acids were evaluated by liquid extraction and analysis of the terpenoids via GC-MS. As sesquiterpenoid production was enhanced by the most by lipid-rich side-streams, a cultivation with 13C-labeled acetate was conducted. Data confirmed that lipid-rich side-streams enhanced the sesquiterpene production through an increased acetyl-CoA pool.
RESUMEN
Differences between seven authentic samples of Citrus sinensis var. Valencia peel (albedo and flavedo) and juices from Spain and Uruguay, in addition to a concentrate obtained from Brazil, were investigated by untargeted metabolic profiling. Sixty-six metabolites were detected by nano-liquid chromatography coupled to a high-resolution electrospray-ionization quadrupole time-of-flight mass spectrometer (nLC-ESI-qTOF-MS) belonging to phenolic acids, coumarins, flavonoid glycosides, limonoids, terpenes, and fatty acids. Eleven metabolites were detected for the first time in Citrus sinensis and identified as citroside A, sinapic acid pentoside, apigenin-C-hexosyl-O-pentoside, chrysoeriol-C-hexoside, di-hexosyl-diosmetin, perilloside A, gingerol, ionone epoxide hydroxy-sphingenine, xanthomicrol, and coumaryl alcohol-O-hexoside. Some flavonoids were completely absent from the juice, while present most prominently in the Citrus peel, conveying more industrial and economic prospects to the latter. Multivariate data analyses clarified that the differences among orange parts overweighed the geographical source. PCA analysis of ESI-(-)-mode data revealed for hydroxylinoleic acid abundance in flavedo peel from Uruguay the most distant cluster from all others. The PCA analysis of ESI-(+)-mode data provided a clear segregation of the different Citrus sinensis parts primarily due to the large diversity of flavonoids and coumarins among the studied samples.
RESUMEN
A laccase (Lcc1) from the white-rot fungus Meripilus giganteus was purified with superior yields of 34% and 90% by conventional chromatography or by foam separation, respectively. Size exclusion chromatography (SEC) and sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) yielded a molecular mass of 55 kDa. The enzyme possessed an isoelectric point of 3.1 and was able to oxidize the common laccase substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) at a pH of 2.0, whereas the enzyme was still able to oxidize ABTS and 2,6-dimethoxyphenol (DMP) at pH 6.0. Lcc1 exhibited low K ( m ) values of 8 µM (ABTS) and 80 µM (DMP) and remarkable catalytic efficiency towards the non-phenolic substrate ABTS of 37,437 k (cat)/k (m) (s(-1) mM(-1)). The laccase showed a high stability towards high concentrations of various metal ions, EDTA and surfactants indicating a considerable biotechnological potential. Furthermore, Lcc1 exhibited an increased activity as well as a striking boost of stability in the presence of surfactants. Degenerated primers were deduced from peptide fragments. The complete coding sequence of lcc1 was determined to 1,551 bp and confirmed via amplification of the 2,214 bp genomic sequence which included 12 introns. The deduced 516 amino acid (aa) sequence of the lcc1 gene shared 82% identity and 90% similarity with a laccase from Rigidoporus microporus. The sequence data may aid theoretical studies and enzyme engineering efforts to create laccases with an improved stability towards metal ions and bipolar compounds.
Asunto(s)
Coriolaceae/enzimología , Inhibidores Enzimáticos/metabolismo , Lacasa/metabolismo , Tensoactivos/metabolismo , Benzotiazoles , Cromatografía/métodos , Cromatografía en Gel , ADN de Hongos/química , ADN de Hongos/genética , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Punto Isoeléctrico , Cinética , Lacasa/química , Lacasa/aislamiento & purificación , Datos de Secuencia Molecular , Peso Molecular , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Ácidos Sulfónicos , TemperaturaRESUMEN
Lupin protein extracts (LPE) are prone to the emission of a beany off-flavour during storage, which confines its application in foods. Fermentation of LPE using several lactic acid bacteria was conducted to reduce off-flavour formation in stored samples. The aroma profile of untreated LPE was compared to those of fermented protein extracts (LPEF). Hexanal and n-hexanol were used as indicator substances of progressing lipid oxidation. The most powerful odourants were evaluated by GC-olfactometry-flavour dilution analysis and identified according to their mass spectra, odour descriptions, and retention indices. Twenty two volatile substances with dilution factors equal to or higher than 100 were determined in both LPE and LPEF, amongst them n-pentanal, n-hexanal, 1-pyrroline, dimethyl trisulfide, 1-octen-3-one, 3-octen-2-one, 1-octen-3-ol, and ß-damascenone. The aroma profile was significantly modified by the fermentation process and the off-flavours were reduced and/or masked by newly formed compounds.
RESUMEN
BACKGROUND: Recent studies have suggested that the composition of lipophilic components of egg yolk is influenced by the feed. The aim of the present study was to isolate volatile flavours from egg yolk after different feeding trials using solvent extraction and thin layer high-vacuum distillation. The resulting aroma extract was analysed by various gas chromatographic techniques. Chickens were either fed with laying meal, laying meal plus cabbage and onion or laying meal plus rapeseed oil or held in free-range. RESULTS: The predominating odour impressions were described as onion-like. Comparing all analytical and sensory data of the flavour extracts, there were minimal differences among the respective samples. Free-range eggs contained fewer volatile compounds than the other samples, whereas rapeseed oil supplementation caused an enrichment of sulfur compounds. CONCLUSION: While data from gas chromatography/flame ionisation detection, gas chromatography/mass spectrometry and gas chromatography/olfactometry were less conclusive, the results from sulfur-specific analysis using gas chromatography/flame photometric detection showed a considerable effect. However, because of the low abundance of sulfur compounds in the yolk, these differences are not expected to be perceivable by the consumer.
Asunto(s)
Pollos/metabolismo , Dieta/veterinaria , Yema de Huevo/química , Olfato , Compuestos Orgánicos Volátiles/análisis , Crianza de Animales Domésticos , Animales , Brassica/efectos adversos , Dieta/efectos adversos , Destilación/métodos , Ácidos Grasos Monoinsaturados , Femenino , Humanos , Cebollas/efectos adversos , Aceites de Plantas/administración & dosificación , Aceites de Plantas/efectos adversos , Aceite de Brassica napus , Compuestos de Azufre/análisis , Compuestos de Azufre/aislamiento & purificación , Gusto , Compuestos Orgánicos Volátiles/aislamiento & purificaciónRESUMEN
Three phenolic acids, p-coumaric, ferulic and caffeic acid as well as cinnamic acid were added to raw potatoes and sweet potatoes before frying. A distinct mitigation of acrylamide was not detected. Fried samples were analysed for postulated adducts of a direct reaction between acrylamide and these phenolic acids using LC-MS. In a model system with pure compounds (phenylacrylic acid and acrylamide) heated on 10% hydrated silica gel one specific adduct (respective m/z for M â+ âH+) was formed in each reaction. MS/MS-data suggested an oxa-Michael formation of 3-amino-3-oxopropyl-phenylacrylates, which was confirmed by de novo syntheses along an SN2 substitution of 3-chloropropanamide. Exemplarily, the structure of the ester was confirmed for p-coumaric acid by NMR-data. Standard addition revealed that 3-amino-(3-oxopropyl-phenyl)-acrylates occurred neither in fried potato nor in sweet potato, while a formation was shown in phenylacrylic acid plus acrylamide supplemented potatoes and sweet potatoes.
RESUMEN
The vegetable watercress (Nasturtium officinale R.Br.) is, besides being a generally nutritious food, a rich source of glucosinolates. Gluconasturtiin, the predominant glucosinolate in watercress, has been shown to have several health beneficial properties through its bioactive breakdown product phenethyl isothiocyanate. Little is known about the immunoregulatory effects of watercress. Moreover, anti-inflammatory effects have mostly been shown in in vitro or in animal models. Hence, we conducted a proof-of-concept study to investigate the effects of watercress on the human immune system. In a cross-over intervention study, 19 healthy subjects (26.5 ± 4.3 years; 14 males, 5 females) were given a single dose (85 g) of fresh self-grown watercress or a control meal. Two hours later, a 30 min high-intensity workout was conducted to promote exercise-induced inflammation. Blood samples were drawn before, 5 min after, and 3 h after the exercise unit. Inflammatory blood markers (IL-1ß, IL-6, IL-10, TNF-α, MCP-1, MMP-9) were analyzed in whole blood cultures after ex vivo immune cell stimulation via lipopolysaccharides. A mild pro-inflammatory reaction was observed after watercress consumption indicated by an increase in IL-1ß, IL-6, and TNF-α, whereas the immune response was more pronounced for both pro-inflammatory and anti-inflammatory markers (IL-1ß, IL-6, IL-10, TNF-α) after the exercise unit compared to the control meal. During the recovery phase, watercress consumption led to a stronger anti-inflammatory downregulation of the pro-inflammatory cytokines IL-6 and TNF-α. In conclusion, we propose that watercress causes a stronger pro-inflammatory response and anti-inflammatory counter-regulation during and after exercise. The clinical relevance of these changes should be verified in future studies.
RESUMEN
During submerged cultivation, the edible basidiomycete Fomitopsis betulina (previously Piptoporus betulinus) developed a fruity odor, strongly reminding of pineapple. Olfactometric analysis showed that this impression was mainly caused by the two (5E/Z,7E,9)-decatrien-2-ones. At the time of maximum concentration on the 5th day, the (5E/5Z)-ratio was 94:6. Three hypotheses were experimentally examined to shed light onto the genesis of the uncommon volatiles: first, an indirect effect of agro-industrial side-streams, such as cabbage cuttings, supporting good growth; second, an unsaturated odd-numbered fatty acid precursor; and third, a polyketide-like pathway. In the presence of 1-13C- or 2-13C-acetate up to five acetates were incorporated into the molecular ions of the C10-body. Addition of 1-13C-pyruvate or 1-13C-lactate did not confirm an odd-numbered starter of the polyketide chain. None of the methylketones was found in pineapple or any other food before.
Asunto(s)
Coriolaceae/química , Odorantes/análisis , Compuestos Orgánicos Volátiles/química , Acetatos/análisis , Isótopos de Carbono/análisis , Coriolaceae/crecimiento & desarrollo , Coriolaceae/metabolismo , Cetonas/química , Compuestos Orgánicos Volátiles/metabolismoRESUMEN
During the cultivation of the edible mushroom Fomitopsis betulina on agro-industrial side streams, a pleasant flavor strongly reminiscent of pineapple was perceived. Aroma extract dilution analyses identified two flavor components with a distinct pineapple odor. On the basis of mass spectrometric data, a Wittig reaction of (E)-penta-2,4-dien-1-yltriphosphonium bromide with ethyl levulinate was conducted. The resulting (5E/Z,7E,9)-decatrien-2-ones were identical to the compounds isolated from the fungal culture. Some structurally related methyl ketones were synthesized, confirmed by nuclear magnetic resonance and mass spectrometry, and their odor was characterized. The lowest odor threshold and most characteristic pineapple-like odor was found for (5Z,7E,9)-decatrien-2-one. Global minimum energy calculation of the methyl ketones and the comparison to (1,3E,5Z)-undecatriene, a character impact compound of fresh pineapple, showed that a chain length of at least 10 carbon atoms and a terminal double bond embedded in a "L"-shaped conformation were common to compounds imparting an intense pineapple-like odor. Both (5E/Z,7E,9)-decatrien-2-ones have not been described as natural flavor compounds.
Asunto(s)
Aromatizantes/química , Polyporales/química , Ananas/química , Cromatografía de Gases y Espectrometría de Masas , Cetonas/química , Espectroscopía de Resonancia Magnética , Odorantes/análisisRESUMEN
A closed gas loop bioprocess was developed to improve fungal biotransformation of monoterpenes. By circulating monoterpene-saturated process gas, the evaporative loss of the volatile precursor from the medium during the biotransformation was avoided. Penicillium solitum, isolated from kiwi, turned out to be highly tolerant towards monoterpenes and to convert alpha-pinene to a range of products including verbenone, a valuable aroma compound. The gas loop was mandatory to reproduce the production of 35 mg L(-1) verbenone obtained in shake flasks and also in the bioreactor. Penicillium digitatum DSM 62840 regioselectively converted (+)-limonene to the aroma compound alpha-terpineol, but shake flask cultures revealed a pronounced growth inhibition when initial concentrations exceeded 1.9 mM. In the bioreactor, toxic effects on P. digitatum during biotransformation were alleviated by starting a sequential feeding of non-toxic limonene portions after a preceding growth phase. Closing the precursor-saturated gas loop during the biotransformation allowed for an additional replenishment of limonene via the gas phase. The gas loop system led to a maximum alpha-terpineol concentration of 1,009 mg L(-1) and an average productivity of 8-9 mg L(-1) h(-1) which represents a doubling of the respective values previously reported. Furthermore, a molar conversion yield of up to 63% was achieved.