Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 615
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(19): 3568-3587.e27, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36113428

RESUMEN

Computational analysis of cellular activity has developed largely independently of modern transcriptomic cell typology, but integrating these approaches may be essential for full insight into cellular-level mechanisms underlying brain function and dysfunction. Applying this approach to the habenula (a structure with diverse, intermingled molecular, anatomical, and computational features), we identified encoding of reward-predictive cues and reward outcomes in distinct genetically defined neural populations, including TH+ cells and Tac1+ cells. Data from genetically targeted recordings were used to train an optimized nonlinear dynamical systems model and revealed activity dynamics consistent with a line attractor. High-density, cell-type-specific electrophysiological recordings and optogenetic perturbation provided supporting evidence for this model. Reverse-engineering predicted how Tac1+ cells might integrate reward history, which was complemented by in vivo experimentation. This integrated approach describes a process by which data-driven computational models of population activity can generate and frame actionable hypotheses for cell-type-specific investigation in biological systems.


Asunto(s)
Habénula , Recompensa , Dinámica Poblacional
2.
Cell ; 181(2): 396-409.e26, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32220308

RESUMEN

Decades after the motor homunculus was first proposed, it is still unknown how different body parts are intermixed and interrelated in human motor cortical areas at single-neuron resolution. Using multi-unit recordings, we studied how face, head, arm, and leg movements are represented in the hand knob area of premotor cortex (precentral gyrus) in people with tetraplegia. Contrary to traditional expectations, we found strong representation of all movements and a partially "compositional" neural code that linked together all four limbs. The code consisted of (1) a limb-coding component representing the limb to be moved and (2) a movement-coding component where analogous movements from each limb (e.g., hand grasp and toe curl) were represented similarly. Compositional coding might facilitate skill transfer across limbs, and it provides a useful framework for thinking about how the motor system constructs movement. Finally, we leveraged these results to create a whole-body intracortical brain-computer interface that spreads targets across all limbs.


Asunto(s)
Lóbulo Frontal/fisiología , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Adulto , Mapeo Encefálico , Lóbulo Frontal/anatomía & histología , Cuerpo Humano , Humanos , Corteza Motora/metabolismo , Movimiento/fisiología
3.
Mol Cell ; 82(7): 1261-1277.e9, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35305311

RESUMEN

The product of hexokinase (HK) enzymes, glucose-6-phosphate, can be metabolized through glycolysis or directed to alternative metabolic routes, such as the pentose phosphate pathway (PPP) to generate anabolic intermediates. HK1 contains an N-terminal mitochondrial binding domain (MBD), but its physiologic significance remains unclear. To elucidate the effect of HK1 mitochondrial dissociation on cellular metabolism, we generated mice lacking the HK1 MBD (ΔE1HK1). These mice produced a hyper-inflammatory response when challenged with lipopolysaccharide. Additionally, there was decreased glucose flux below the level of GAPDH and increased upstream flux through the PPP. The glycolytic block below GAPDH is mediated by the binding of cytosolic HK1 with S100A8/A9, resulting in GAPDH nitrosylation through iNOS. Additionally, human and mouse macrophages from conditions of low-grade inflammation, such as aging and diabetes, displayed increased cytosolic HK1 and reduced GAPDH activity. Our data indicate that HK1 mitochondrial binding alters glucose metabolism through regulation of GAPDH.


Asunto(s)
Glucosa , Hexoquinasa/metabolismo , Animales , Glucosa/metabolismo , Glucólisis , Hexoquinasa/genética , Ratones , Mitocondrias/metabolismo , Vía de Pentosa Fosfato
4.
Nat Rev Neurosci ; 25(4): 213-236, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443626

RESUMEN

The study of the cortical control of movement experienced a conceptual shift over recent decades, as the basic currency of understanding shifted from single-neuron tuning towards population-level factors and their dynamics. This transition was informed by a maturing understanding of recurrent networks, where mechanism is often characterized in terms of population-level factors. By estimating factors from data, experimenters could test network-inspired hypotheses. Central to such hypotheses are 'output-null' factors that do not directly drive motor outputs yet are essential to the overall computation. In this Review, we highlight how the hypothesis of output-null factors was motivated by the venerable observation that motor-cortex neurons are active during movement preparation, well before movement begins. We discuss how output-null factors then became similarly central to understanding neural activity during movement. We discuss how this conceptual framework provided key analysis tools, making it possible for experimenters to address long-standing questions regarding motor control. We highlight an intriguing trend: as experimental and theoretical discoveries accumulate, the range of computational roles hypothesized to be subserved by output-null factors continues to expand.


Asunto(s)
Corteza Motora , Humanos , Corteza Motora/fisiología , Movimiento/fisiología , Neuronas/fisiología
5.
Nature ; 620(7976): 1031-1036, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612500

RESUMEN

Speech brain-computer interfaces (BCIs) have the potential to restore rapid communication to people with paralysis by decoding neural activity evoked by attempted speech into text1,2 or sound3,4. Early demonstrations, although promising, have not yet achieved accuracies sufficiently high for communication of unconstrained sentences from a large vocabulary1-7. Here we demonstrate a speech-to-text BCI that records spiking activity from intracortical microelectrode arrays. Enabled by these high-resolution recordings, our study participant-who can no longer speak intelligibly owing to amyotrophic lateral sclerosis-achieved a 9.1% word error rate on a 50-word vocabulary (2.7 times fewer errors than the previous state-of-the-art speech BCI2) and a 23.8% word error rate on a 125,000-word vocabulary (the first successful demonstration, to our knowledge, of large-vocabulary decoding). Our participant's attempted speech was decoded  at 62 words per minute, which is 3.4 times as fast as the previous record8 and begins to approach the speed of natural conversation (160 words per minute9). Finally, we highlight two aspects of the neural code for speech that are encouraging for speech BCIs: spatially intermixed tuning to speech articulators that makes accurate decoding possible from only a small region of cortex, and a detailed articulatory representation of phonemes that persists years after paralysis. These results show a feasible path forward for restoring rapid communication to people with paralysis who can no longer speak.


Asunto(s)
Interfaces Cerebro-Computador , Prótesis Neurales , Parálisis , Habla , Humanos , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/rehabilitación , Corteza Cerebral/fisiología , Microelectrodos , Parálisis/fisiopatología , Parálisis/rehabilitación , Vocabulario
6.
Annu Rev Neurosci ; 43: 249-275, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32640928

RESUMEN

Significant experimental, computational, and theoretical work has identified rich structure within the coordinated activity of interconnected neural populations. An emerging challenge now is to uncover the nature of the associated computations, how they are implemented, and what role they play in driving behavior. We term this computation through neural population dynamics. If successful, this framework will reveal general motifs of neural population activity and quantitatively describe how neural population dynamics implement computations necessary for driving goal-directed behavior. Here, we start with a mathematical primer on dynamical systems theory and analytical tools necessary to apply this perspective to experimental data. Next, we highlight some recent discoveries resulting from successful application of dynamical systems. We focus on studies spanning motor control, timing, decision-making, and working memory. Finally, we briefly discuss promising recent lines of investigation and future directions for the computation through neural population dynamics framework.


Asunto(s)
Encéfalo/fisiología , Biología Computacional , Aprendizaje Profundo , Red Nerviosa/fisiología , Animales , Biología Computacional/métodos , Humanos , Neuronas/fisiología , Dinámica Poblacional
7.
Nature ; 602(7896): 274-279, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35082444

RESUMEN

The brain's remarkable ability to learn and execute various motor behaviours harnesses the capacity of neural populations to generate a variety of activity patterns. Here we explore systematic changes in preparatory activity in motor cortex that accompany motor learning. We trained rhesus monkeys to learn an arm-reaching task1 in a curl force field that elicited new muscle forces for some, but not all, movement directions2,3. We found that in a neural subspace predictive of hand forces, changes in preparatory activity tracked the learned behavioural modifications and reassociated4 existing activity patterns with updated movements. Along a neural population dimension orthogonal to the force-predictive subspace, we discovered that preparatory activity shifted uniformly for all movement directions, including those unaltered by learning. During a washout period when the curl field was removed, preparatory activity gradually reverted in the force-predictive subspace, but the uniform shift persisted. These persistent preparatory activity patterns may retain a motor memory of the learned field5,6 and support accelerated relearning of the same curl field. When a set of distinct curl fields was learned in sequence, we observed a corresponding set of field-specific uniform shifts which separated the associated motor memories in the neural state space7-9. The precise geometry of these uniform shifts in preparatory activity could serve to index motor memories, facilitating the acquisition, retention and retrieval of a broad motor repertoire.


Asunto(s)
Aprendizaje , Corteza Motora , Destreza Motora , Animales , Aprendizaje/fisiología , Macaca mulatta/fisiología , Corteza Motora/fisiología , Destreza Motora/fisiología , Movimiento/fisiología , Músculo Esquelético/fisiología
8.
Nature ; 593(7858): 249-254, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33981047

RESUMEN

Brain-computer interfaces (BCIs) can restore communication to people who have lost the ability to move or speak. So far, a major focus of BCI research has been on restoring gross motor skills, such as reaching and grasping1-5 or point-and-click typing with a computer cursor6,7. However, rapid sequences of highly dexterous behaviours, such as handwriting or touch typing, might enable faster rates of communication. Here we developed an intracortical BCI that decodes attempted handwriting movements from neural activity in the motor cortex and translates it to text in real time, using a recurrent neural network decoding approach. With this BCI, our study participant, whose hand was paralysed from spinal cord injury, achieved typing speeds of 90 characters per minute with 94.1% raw accuracy online, and greater than 99% accuracy offline with a general-purpose autocorrect. To our knowledge, these typing speeds exceed those reported for any other BCI, and are comparable to typical smartphone typing speeds of individuals in the age group of our participant (115 characters per minute)8. Finally, theoretical considerations explain why temporally complex movements, such as handwriting, may be fundamentally easier to decode than point-to-point movements. Our results open a new approach for BCIs and demonstrate the feasibility of accurately decoding rapid, dexterous movements years after paralysis.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo/fisiología , Comunicación , Escritura Manual , Humanos , Redes Neurales de la Computación , Traumatismos de la Médula Espinal , Factores de Tiempo
9.
Nature ; 591(7851): 604-609, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33473215

RESUMEN

In dynamic environments, subjects often integrate multiple samples of a signal and combine them to reach a categorical judgment1. The process of deliberation can be described by a time-varying decision variable (DV), decoded from neural population activity, that predicts a subject's upcoming decision2. Within single trials, however, there are large moment-to-moment fluctuations in the DV, the behavioural significance of which is unclear. Here, using real-time, neural feedback control of stimulus duration, we show that within-trial DV fluctuations, decoded from motor cortex, are tightly linked to decision state in macaques, predicting behavioural choices substantially better than the condition-averaged DV or the visual stimulus alone. Furthermore, robust changes in DV sign have the statistical regularities expected from behavioural studies of changes of mind3. Probing the decision process on single trials with weak stimulus pulses, we find evidence for time-varying absorbing decision bounds, enabling us to distinguish between specific models of decision making.


Asunto(s)
Toma de Decisiones/fisiología , Modelos Neurológicos , Animales , Conducta de Elección/fisiología , Discriminación en Psicología , Juicio , Macaca/fisiología , Movimiento (Física) , Percepción de Movimiento , Estimulación Luminosa , Factores de Tiempo
10.
BMC Biol ; 22(1): 108, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714997

RESUMEN

BACKGROUND: Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood. RESULTS: In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence. CONCLUSIONS: These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.


Asunto(s)
Genes del Tipo Sexual de los Hongos , Genes del Tipo Sexual de los Hongos/genética , Ascomicetos/genética , Ascomicetos/fisiología , Feromonas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Verticillium
11.
BMC Plant Biol ; 24(1): 717, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39069632

RESUMEN

BACKGROUND: Sclerotinia spp. are generalist fungal pathogens, infecting over 700 plant hosts worldwide, including major crops. While host resistance is the most sustainable and cost-effective method for disease management, complete resistance to Sclerotinia diseases is rare. We recently identified soft basal stem as a potential susceptibility factor to Sclerotinia minor infection in lettuce (Lactuca sativa) under greenhouse conditions. RESULTS: Analysis of stem and root cell wall composition in five L. sativa and one L. serriola accessions with varying growth habits and S. minor resistance levels revealed strong association between hemicellulose constituents, lignin polymers, disease phenotypes, and basal stem mechanical strength. Accessions resistant to basal stem degradation consistently exhibited higher levels of syringyl, guaiacyl, and xylose, but lower levels of fucose in stems. These findings suggest that stem cell wall polymers recalcitrant to breakdown by lignocellulolytic enzymes may contribute to stem strength-mediated resistance against S. minor. CONCLUSIONS: The lignin content, particularly guaiacyl and syringyl, along with xylose could potentially serve as biomarkers for identifying more resistant lettuce accessions and breeding lines. Basal stem degradation by S. minor was influenced by localized microenvironment conditions around the stem base of the plants.


Asunto(s)
Ascomicetos , Pared Celular , Resistencia a la Enfermedad , Lactuca , Lignina , Enfermedades de las Plantas , Tallos de la Planta , Tallos de la Planta/microbiología , Tallos de la Planta/metabolismo , Pared Celular/metabolismo , Lactuca/microbiología , Lactuca/metabolismo , Ascomicetos/fisiología , Lignina/metabolismo , Enfermedades de las Plantas/microbiología , Polisacáridos/metabolismo , Microambiente Celular , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo
12.
Chemphyschem ; : e202300749, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177165

RESUMEN

A Model mesogen and its symmetrical Dimer made up of phenyl benzoate core unit are investigated by 13C NMR spectroscopy. The existence of layer order in smectic A and smectic C phases of Dimer mesogen is established by powder X-ray diffraction. The chemical shift anisotropy (CSA) tensors of Model mesogen are determined by 2D separation of undistorted powder patterns by effortless recoupling (SUPER) experiment and are utilized for calculating the order parameters employing the alignment-induced chemical shifts (AIS). Additionally, 2D separated local field (SLF) NMR is availed for extracting 13C-1H dipolar couplings for both mesogens and used for computing the order parameters. A good agreement in the order parameters calculated from 13C-1H dipolar couplings and AIS is observed. Accordingly, the main order parameter (Szz) for the phenyl rings of the Model mesogen is found to be in the range 0.54 - 0.82, and for the Dimer mesogen, the values span 0.64 - 0.82 across mesophases. Since the phenyl benzoate core unit is frequently employed structural moiety for constructing the main chain as well as side chain liquid crystalline polymers and liquid crystalline elastomers, the CSA tensors reported here will be of immense utility for the structural characterization of these materials.

13.
Philos Trans A Math Phys Eng Sci ; 382(2282): 20230270, 2024 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-39307166

RESUMEN

The development of new technologies for the synthesis of green ammonia using exclusively hydrogen from water and nitrogen from air in processes driven exclusively by renewable energy is poised to decarbonize the production of this important molecule for the production of green fertilizers as well as offering a carbon-free vector for the long-term storage of renewable energy. In this article, we explore and quantify the CO2 emission reduction potential of green ammonia, evaluating how it can facilitate the decarbonization of other hard-to-abate industrial processes such as steel, glass and cement industries. Green ammonia can be used as a direct replacement of fossil fuels used as energy sources in the different processes. In addition, green ammonia can facilitate the electrification of the processes (so-called Power-to-X) by storing renewable energy in the long term to balance a decarbonized grid against intermittent renewable energy supplies. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.

14.
Phytopathology ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145683

RESUMEN

Verticillium dahliae is a soilborne phytopathogenic fungus causing Verticillium wilt on hundreds of plant species. Several sequenced genomes of V. dahliae are available, but functional characterization of most genes has just begun. Based on our previous comparison of the transcriptome from the wild-type and ΔVdCf2 strains, a significant upregulation of the gene cassette, Vd276-280, in the ΔVdCf2 strain was observed. In this study, the functional characterization of the Vd276-280 gene cassette was performed. Agrobacterium-mediated knockout of this gene cassette in V. dahliae significantly inhibited conidiation, melanized microsclerotium formation in the mutant strains, and their virulence towards cotton. Furthermore, deletion of individual genes in the Vd276-280 gene cassette identified that the disruption of VDAG_07276 and VDAG_07280 delayed microsclerotium formation, inhibited conidiation, and reduced virulence towards cotton. Our data suggest that VDAG_07276 and VDAG_07280 in the Vd276-280 gene cassette mainly act as positive regulators of development and virulence in V. dahliae.

15.
Phytopathology ; 114(1): 61-72, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37530500

RESUMEN

Endophytes play important roles in promoting plant growth and controlling plant diseases. Verticillium wilt is a vascular wilt disease caused by Verticillium dahliae, a widely distributed soilborne pathogen that causes significant economic losses on cotton each year. In this study, an endophyte KRS015, isolated from the seed of the Verticillium wilt-resistant Gossypium hirsutum 'Zhongzhimian No. 2', was identified as Bacillus subtilis by morphological, phylogenetic, physiological, and biochemical analyses. The volatile organic compounds (VOCs) produced by KRS015 or its cell-free fermentation extract had significant antagonistic effects on various pathogenic fungi, including V. dahliae. KRS015 reduced Verticillium wilt index and colonization of V. dahliae in treated cotton seedlings significantly; the disease reduction rate was ∼62%. KRS015 also promoted plant growth, potentially mediated by the growth-related cotton genes GhACL5 and GhCPD-3. The cell-free fermentation extract of KRS015 triggered a hypersensitivity response, including reactive oxygen species (ROS) and expression of resistance-related plant genes. VOCs from KRS015 also inhibited germination of conidia and the mycelial growth of V. dahliae, and were mediated by growth and development-related genes such as VdHapX, VdMcm1, Vdpf, and Vel1. These results suggest that KRS015 is a potential agent for controlling Verticillium wilt and promoting growth of cotton.


Asunto(s)
Acremonium , Ascomicetos , Verticillium , Bacillus subtilis/genética , Filogenia , Enfermedades de las Plantas/microbiología , Verticillium/fisiología , Gossypium/genética , Extractos Vegetales , Resistencia a la Enfermedad/fisiología , Regulación de la Expresión Génica de las Plantas
16.
BMC Biol ; 21(1): 166, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542270

RESUMEN

BACKGROUND: The extracellular space between the cell wall and plasma membrane is a battlefield in plant-pathogen interactions. Within this space, the pathogen employs its secretome to attack the host in a variety of ways, including immunity manipulation. However, the role of the plant secretome is rarely studied for its role in disease resistance. RESULTS: Here, we examined the secretome of Verticillium wilt-resistant Gossypium hirsutum cultivar Zhongzhimian No.2 (ZZM2, encoding 95,327 predicted coding sequences) to determine its role in disease resistance against the wilt causal agent, Verticillium dahliae. Bioinformatics-driven analyses showed that the ZZM2 genome encodes 2085 secreted proteins and that these display disequilibrium in their distribution among the chromosomes. The cotton secretome displayed differences in the abundance of certain amino acid residues as compared to the remaining encoded proteins due to the localization of these putative proteins in the extracellular space. The secretome analysis revealed conservation for an allotetraploid genome, which nevertheless exhibited variation among orthologs and comparable unique genes between the two sub-genomes. Secretome annotation strongly suggested its involvement in extracellular stress responses (hydrolase activity, oxidoreductase activity, and extracellular region, etc.), thus contributing to resistance against the V. dahliae infection. Furthermore, the defense response genes (immunity marker NbHIN1, salicylic acid marker NbPR1, and jasmonic acid marker NbLOX4) were activated to varying degrees when Nicotina benthamiana leaves were agro-infiltrated with 28 randomly selected members, suggesting that the secretome plays an important role in the immunity response. Finally, gene silencing assays of 11 members from 13 selected candidates in ZZM2 displayed higher susceptibility to V. dahliae, suggesting that the secretome members confer the Verticillium wilt resistance in cotton. CONCLUSIONS: Our data demonstrate that the cotton secretome plays an important role in Verticillium wilt resistance, facilitating the development of the resistance gene markers and increasing the understanding of the mechanisms regulating disease resistance.


Asunto(s)
Ascomicetos , Verticillium , Gossypium/genética , Resistencia a la Enfermedad/genética , Secretoma , Verticillium/metabolismo , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
BMC Biol ; 21(1): 237, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904147

RESUMEN

BACKGROUND: Melanin plays important roles in morphological development, survival, host-pathogen interactions and in the virulence of phytopathogenic fungi. In Verticillum dahliae, increases in melanin are recognized as markers of maturation of microsclerotia which ensures the long-term survival and stress tolerance, while decreases in melanin are correlated with increased hyphal growth in the host. The conserved upstream components of the VdCmr1-regulated pathway controlling melanin production in V. dahliae have been extensively identified, but the direct activators of this pathway are still unclear. RESULTS: We identified two genes encoding conserved C2H2-type zinc finger proteins VdZFP1 and VdZFP2 adjacent to VdPKS9, a gene encoding a negative regulator of both melanin biosynthesis and microsclerotia formation in V. dahliae. Both VdZFP1 and VdZFP2 were induced during microsclerotia development and were involved in melanin deposition. Their localization changed from cytoplasmic to nuclear in response to osmotic pressure. VdZFP1 and VdZFP2 act as modulators of microsclerotia melanization in V. dahliae, as confirmed by melanin biosynthesis inhibition and supplementation with the melanin pathway intermediate scytalone in albino strains. The results indicate that VdZFP1 and VdZFP2 participate in melanin biosynthesis by positively regulating VdCmr1. Based on the results obtained with yeast one- and two-hybrid (Y1H and Y2H) and bimolecular fluorescence complementation (BiFC) systems, we determined the melanin biosynthesis relies on the direct interactions among VdZFP1, VdZFP2 and VdCmr1, and these interactions occur on the cell walls of microsclerotia. Additionally, VdZFP1 and/or VdZFP2 mutants displayed increased sensitivity to stress factors rather than alterations in pathogenicity, reflecting the importance of melanin in stress tolerance of V. dahliae. CONCLUSIONS: Our results revealed that VdZFP1 and VdZFP2 positively regulate VdCmr1 to promote melanin deposition during microsclerotia development, providing novel insight into the regulation of melanin biosynthesis in V. dahliae.


Asunto(s)
Ascomicetos , Verticillium , Melaninas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Verticillium/genética , Dedos de Zinc , Enfermedades de las Plantas/microbiología
18.
Plant Dis ; 108(7): 2170-2180, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38506911

RESUMEN

Verticillium wilt, caused by Verticillium dahliae, is one of the most devastating soilborne diseases of lettuce (Lactuca sativa L.). There are three races of V. dahliae, and each race has been characterized by markers representing race-specific effectors. Race 1 is differentiated by the presence of the functional secretory Ave1 effector. Similarly, races 2 and 3 are differentiated by effectors VdR2e and VdR3e, respectively. Although the presence of race 1 in coastal California was well established, the presence of effector-based races 2 and 3 was uncertain. This study therefore focused on characterizing 727 isolates collected from 142 ranches of symptomatic lettuce and other crops from coastal California. Based on this evaluation, 523 isolates were designated as race 1, 20 isolates as race 2, 23 isolates as race 3, and 17 as race undefined. Isolates representing other Verticillium species totaled 110, and 34 were non-Verticillium fungal species. Because the use of resistant cultivars is a key strategy to manage this disease, we evaluated 48 lettuce germplasm lines and 1 endive (Cichorium endivia L.) line, comprising commercial cultivars and breeding lines, including the race 1-resistant heirloom cultivar La Brillante and the susceptible cultivar Salinas as controls. Resistance against races 1, 2, and 3 along with VdLs17, a virulent isolate of V. dahliae from lettuce that is currently not assigned to a race, was evaluated in replicated greenhouse experiments. Two crisphead lettuce lines, HL28 and HL29, exhibited resistance against race 1 and a partial resistance against race 2, whereas all other lines were highly susceptible to races 1 and 2 and VdLs17. The majority of lines exhibited higher resistance to race 3 relative to the other two races. This study documents the current distribution of the different races in coastal California. In addition, the sources of resistance currently being developed should be effective or partially effective against these races for targeted deployment as soon as they are available.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Lactuca , Enfermedades de las Plantas , Lactuca/microbiología , California , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética , Ascomicetos/genética , Ascomicetos/fisiología , Verticillium
19.
J Surg Orthop Adv ; 33(1): 29-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38815075

RESUMEN

Bracing reduces the need for surgical intervention in patients with adolescent idiopathic scoliosis (AIS). However, bracing outcomes with variable body mass index (BMI) are understudied. The authors sought to determine the association of BMI with bracing outcomes. The authors performed a retrospective cohort study of 104 patients presenting with AIS. Initial Risser score, hours of bracing per day, BMI percentile, and curve magnitude pre- and postbracing were collected. There was no detectable difference between years of brace wear or primary curve magnitude at time of presentation between both groups. Overall, 29% (25/87) of underweight/normal weight patients and 59% (10/17) of overweight/obese patients had curves ≥ 45 degrees at the end of bracing (p = 0.016). Odds of having a curve ≥ 45 degrees after bracing were 3.5 (95% confidence interval: 1.2 to 10.3, p = 0.021) times higher for overweight/obese patients compared with underweight/normal weight patients. Increased overlying adipose tissue may reduce the corrective forces required to straighten the spine. (Journal of Surgical Orthopaedic Advances 33(1):029-032, 2024).


Asunto(s)
Índice de Masa Corporal , Tirantes , Escoliosis , Humanos , Adolescente , Estudios Retrospectivos , Femenino , Masculino , Niño , Resultado del Tratamiento , Sobrepeso/complicaciones , Delgadez , Obesidad/complicaciones
20.
Mol Plant Microbe Interact ; 36(1): 68-72, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36463398

RESUMEN

Verticillium wilt, caused by the fungal pathogen Verticillium dahliae, is the major cause of disease-related yield losses in cotton (Gossypium hirsutum). Despite these losses, the major cultivars of G. hirsutum remain highly susceptible to Verticillium wilt. The lack of understanding on the genetic basis for Verticillium wilt resistance may further hinder progress in deploying elite cultivars with proven resistance, such as the wilt resistant G. hirsutum cultivar Zhongzhimian No. 2. To help remedy this knowledge gap, we sequenced the whole genome of Zhongzhimian No. 2 and assembled it from a combination of PacBio long reads, Illumina short reads, and high-throughput chromosome conformation capture technologies. The final assembly of the genome was 2.33 Gb, encoding 95,327 predicted coding sequences. The GC content was 34.39% with 99.2% of the bases anchored to 26 pseudo-chromosomes that ranged from 53.8 to 127.7 Mb. This resource will help gain a detailed understanding of the genomic features governing high yield and Verticillium wilt resistance in this cultivar. Comparative genomics will be particularly helpful, since there are several published genomes of other Gossypium species. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Gossypium , Verticillium , Gossypium/microbiología , Verticillium/genética , Genes de Plantas , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA