Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 20(1): 104, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37568216

RESUMEN

BACKGROUND: We created a clinical virtual reality application for vestibular rehabilitation. Our app targets contextual sensory integration (C.S.I.) where patients are immersed in safe, increasingly challenging environments while practicing various tasks (e.g., turning, walking). The purpose of this pilot study was to establish the feasibility of a randomized controlled trial comparing C.S.I. training to traditional vestibular rehabilitation. METHODS: Thirty patients with vestibular dysfunction completed the Dizziness Handicap Inventory (DHI), Activities-Specific Balance Confidence Scale (ABC), Visual Vertigo Analog Scale (VVAS), Functional Gait Assessment (FGA), Timed-Up-and-Go (TUG), and Four-Square Step Test (FSST). Following initial assessment, the patients were randomized into 8 weeks (once per week in clinic + home exercise program) of traditional vestibular rehabilitation or C.S.I. training. Six patients had to stop participation due to the covid-19 pandemic, 6 dropped out for other reasons (3 from each group). Ten patients in the traditional group and 8 in the C.S.I group completed the study. We applied an intention to treat analysis. RESULTS: Following intervention, we observed a significant main effect of time with no main effect of group or group by time interaction for the DHI (mean difference - 18.703, 95% CI [-28.235, -9.172], p = 0.0002), ABC (8.556, [0.938, 16.174], p = 0.028), VVAS, (-13.603, [-25.634, -1.573], p = 0.027) and the FGA (6.405, [4.474, 8.335], p < 0.0001). No changes were observed for TUG and FSST. CONCLUSION: Patients' symptoms and function improved following either vestibular rehabilitation method. C.S.I training appeared comparable but not superior to traditional rehabilitation. TRIAL REGISTRATION: This study (NCT04268745) was registered on clincaltrials.gov and can be found at https://clinicaltrials.gov/ct2/show/NCT04268745 .


Asunto(s)
COVID-19 , Enfermedades Vestibulares , Humanos , Enfermedades Vestibulares/rehabilitación , Proyectos Piloto , Pandemias , COVID-19/epidemiología , Mareo , Equilibrio Postural
2.
J Vestib Res ; 33(3): 213-226, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911951

RESUMEN

OBJECTIVE: The purpose of this study was to determine the extent to which sensory integration strategies via head sway, derived from a Head-Mounted Display (HMD), change in people with vestibular disorders following vestibular rehabilitation. DESIGN: Randomized Controlled TrialSetting:Vestibular Rehabilitation ClinicParticipants:Thirty participants with vestibular dysfunction and 21 age-matched controls. MAIN OUTCOME MEASURES: Participants experienced two levels of visual surround (static or moving 'stars', front to back at 0.2 Hz, 32 mm) and white noise (none or rhythmic) while their head sway was recorded via the HTC Vive. We quantified head sway via Directional Path (DP) and Root Mean Square Velocity (RMSV) in 5 directions: anterior-posterior, medio-lateral, pitch, yaw, and roll and Power Spectral Density in low (PSD 1), medium (PSD 2) and high (PSD 3) frequencies in the anterior-posterior direction. INTERVENTIONS: Participants performed the assessment prior to being randomized into 8-weeks of contextual sensory integration training in virtual reality or traditional vestibular rehabilitation and once again following completion of the intervention. Controls performed the assessment once. Twelve participants dropped out, half due to covid lock-down. We applied an intention to treat analysis. RESULTS: We observed significant increases in AP DP, RMSV and all PSDs with change in visual level. Both intervention groups significantly decreased medio-lateral, pitch and roll DP and RMSV and anterior-posterior PSD 2 with no group differences. Vestibular participants were significantly higher than controls on all outcomes pre rehabilitation. Post rehabilitation they were only significantly higher on PSD 2. Sound was not a significant predictor of head sway in this protocol. CONCLUSIONS: Head sway decreased following vestibular rehabilitation regardless of visual load or type of intervention applied. This change was measured via head kinematics derived from a portable HMD which can serve as a sensitive in-clinic assessment for tracking improvement over time.


Asunto(s)
COVID-19 , Enfermedades Vestibulares , Humanos , Equilibrio Postural , Control de Enfermedades Transmisibles , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA