Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Radiology ; 302(3): 662-673, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34904871

RESUMEN

Background Deep learning-based segmentation could facilitate rapid and reproducible T1 lesion load assessments, which is crucial for disease management in multiple sclerosis (MS). T1 unenhancing and contrast-enhancing lesions in MS are those that enhance or do not enhance after administration of a gadolinium-based contrast agent at T1-weighted MRI. Purpose To develop deep learning models for automated assessment of T1 unenhancing and contrast-enhancing lesions; to investigate if joint training improved performance; to reproduce a known ocrelizumab treatment response; and to evaluate the association of baseline T1-weighted imaging metrics with clinical outcomes in relapsing MS clinical trials. Materials and Methods Joint and individual deep learning models (U-Nets) were developed retrospectively on multimodal MRI data sets from large multicenter OPERA trials of relapsing MS (August 2011 to May 2015). The joint model included cross-network connections and a combined loss function. Models were trained on OPERA I data sets with three-fold cross-validation. OPERA II data sets were the internal test set. Dice coefficients, lesion true-positive and false-positive rates, and areas under the receiver operating characteristic curve (AUCs) were used to evaluate model performance. Association of baseline imaging metrics with clinical outcomes was assessed with Cox proportional hazards models. Results A total of 796 patients (3030 visits; mean age, 37 years ± 9; 521 women) from the OPERA II trial were evaluated. The joint model achieved a mean Dice coefficient of 0.77 and 0.74, lesion true-positive rate of 0.88 and 0.86, and lesion false-positive rate of 0.04 and 0.19 for T1 contrast-enhancing and T1 unenhancing lesion segmentation, respectively. Joint training improved performance for smaller T1 contrast-enhancing lesions (≤0.06 mL; individual training AUC: 0.75; joint training AUC: 0.87; P < .001). A significant ocrelizumab treatment effect (P < .001) was seen in reducing the mean number of T1 contrast-enhancing lesions at 24, 48, and 96 weeks (manual assessment at 24 weeks: 10 lesions in 366 patients with ocrelizumab, 141 lesions in 355 patients with interferon, 93% reduction; manual assessment at 48 weeks: six lesions in 355 patients with ocrelizumab, 150 lesions in 317 patients with interferon, 96% reduction; manual assessment at 96 weeks: five lesions in 340 patients with ocrelizumab, 157 lesions in 294 patients with interferon, 97% reduction; joint model assessment at 24 weeks: 19 lesions in 365 patients with ocrelizumab, 128 lesions in 354 patients with interferon, 86% reduction; joint model assessment at 48 weeks: 14 lesions in 355 patients with ocrelizumab, 121 lesions in 317 patients with interferon, 90% reduction; joint model assessment at 96 weeks: 10 lesions in 340 patients with ocrelizumab, 144 lesions in 294 patients with interferon, 94% reduction) and the mean number of new T1 unenhancing lesions across all follow-up examinations (manual assessment: 504 lesions in 1060 visits for ocrelizumab-treated patients, 1438 lesions in 965 visits for interferon-treated patients, 68% reduction; joint model assessment: 205 lesions in 1053 visits for ocrelizumab-treated patients, 661 lesions in 957 visits for interferon-treated patients, 78% reduction). Baseline T1 unenhancing total lesion volume was associated with clinical outcomes (manual hazard ratio [HR]: 1.12, P = .02; joint model HR: 1.11, P = .03). Conclusion Joint architecture and training improved segmentation of MRI T1 contrast-enhancing multiple sclerosis lesions, and both deep learning models had sufficiently high performance to detect an ocrelizumab treatment response consistent with manual assessments. ClinicalTrials.gov: NCT01247324 and NCT01412333 © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Talbott in this issue.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Aprendizaje Profundo , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/tratamiento farmacológico , Adulto , Medios de Contraste , Conjuntos de Datos como Asunto , Femenino , Humanos , Factores Inmunológicos/uso terapéutico , Masculino , Estudios Retrospectivos
2.
Sci Rep ; 13(1): 4102, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914715

RESUMEN

T2 lesion quantification plays a crucial role in monitoring disease progression and evaluating treatment response in multiple sclerosis (MS). We developed a 3D, multi-arm U-Net for T2 lesion segmentation, which was trained on a large, multicenter clinical trial dataset of relapsing MS. We investigated its generalization to other relapsing and primary progressive MS clinical trial datasets, and to an external dataset from the MICCAI 2016 MS lesion segmentation challenge. Additionally, we assessed the model's ability to reproduce the separation of T2 lesion volumes between treatment and control arms; and the association of baseline T2 lesion volumes with clinical disability scores compared with manual lesion annotations. The trained model achieved a mean dice coefficient of ≥ 0.66 and a lesion detection sensitivity of ≥ 0.72 across the internal test datasets. On the external test dataset, the model achieved a mean dice coefficient of 0.62, which is comparable to 0.59 from the best model in the challenge, and a lesion detection sensitivity of 0.68. Lesion detection performance was reduced for smaller lesions (≤ 30 µL, 3-10 voxels). The model successfully maintained the separation of the longitudinal changes in T2 lesion volumes between the treatment and control arms. Such tools could facilitate semi-automated MS lesion quantification; and reduce rater burden in clinical trials.


Asunto(s)
Fenómenos Biológicos , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen por Resonancia Magnética , Progresión de la Enfermedad , Generalización Psicológica , Recurrencia
3.
Int J Radiat Oncol Biol Phys ; 71(5): 1553-62, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18538491

RESUMEN

PURPOSE: Stereotactic radiotherapy (SRT) is fast becoming the method of choice for treatment of nonsuperficial brain lesions. SRT treatment plans of malignant brain tumors typically incorporate a 20-mm isotropic margin to account for microscopic tumor spread; however, distant or progressive tumors occur outside this margin. Our hypothesis is that paths of elevated water diffusion may provide a preferred route for transport or migration of cancer cells. If our hypothesis is correct, then future SRT treatment volumes could be modified to provide elongated treatment margins along the paths of elevated water diffusion, thereby creating a biologically better treatment plan that may reduce the incidence of progression. METHODS AND MATERIALS: Magnetic resonance diffusion tensor imaging (DTI) datasets were acquired on patient subjects before the appearance of >5 mm diameter progressive lesions or secondary tumors. DTI was performed using an echo-planar imaging sequence on a 1.5T clinical General Electric scanner with voxel dimensions of 0.98 x 0.98 x 6 mm. After SRT, patients were given repeated magnetic resonance imaging follow-ups at regular intervals to identify early tumor progression. When progressive disease was detected, DTIstudio and FMRIB Software Library software was used to compute paths of preferred water diffusion through the primary tumor site and the site of progression. RESULTS: Our preliminary results on 14 patient datasets suggest a strong relationship between routes of elevated water diffusion from the primary tumor and the location of tumor progression. CONCLUSIONS: Further investigation is therefore warranted. Future work will employ more sophisticated fiber analysis in a prospective study.


Asunto(s)
Astrocitoma/secundario , Neoplasias Encefálicas/patología , Movimiento Celular/fisiología , Imagen de Difusión por Resonancia Magnética/métodos , Astrocitoma/cirugía , Agua Corporal/fisiología , Neoplasias Encefálicas/cirugía , Progresión de la Enfermedad , Glioblastoma/secundario , Glioblastoma/cirugía , Humanos , Metástasis de la Neoplasia , Neuronavegación , Radiocirugia
4.
Int J Radiat Oncol Biol Phys ; 97(2): 263-269, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28068234

RESUMEN

PURPOSE: After radiation therapy (RT) to the brain, patients often experience memory impairment, which may be partially mediated by damage to the hippocampus. Hippocampal sparing in RT planning is the subject of recent and ongoing clinical trials. Calculating appropriate hippocampal dose constraints would be improved by efficient in vivo measurements of hippocampal damage. In this study we sought to determine whether brain RT was associated with dose-dependent hippocampal atrophy. METHODS AND MATERIALS: Hippocampal volume was measured with magnetic resonance imaging (MRI) in 52 patients who underwent fractionated, partial brain RT for primary brain tumors. Study patients had high-resolution, 3-dimensional volumetric MRI before and 1 year after RT. Images were processed using software with clearance from the US Food and Drug Administration and Conformité Européene marking for automated measurement of hippocampal volume. Automated results were inspected visually for accuracy. Tumor and surgical changes were censored. Mean hippocampal dose was tested for correlation with hippocampal atrophy 1 year after RT. Average hippocampal volume change was also calculated for hippocampi receiving high (>40 Gy) or low (<10 Gy) mean RT dose. A multivariate analysis was conducted with linear mixed-effects modeling to evaluate other potential predictors of hippocampal volume change, including patient (random effect), age, hemisphere, sex, seizure history, and baseline volume. Statistical significance was evaluated at α = 0.05. RESULTS: Mean hippocampal dose was significantly correlated with hippocampal volume loss (r=-0.24, P=.03). Mean hippocampal volume was significantly reduced 1 year after high-dose RT (mean -6%, P=.009) but not after low-dose RT. In multivariate analysis, both RT dose and patient age were significant predictors of hippocampal atrophy (P<.01). CONCLUSIONS: The hippocampus demonstrates radiation dose-dependent atrophy after treatment for brain tumors. Quantitative MRI is a noninvasive imaging technique capable of measuring radiation effects on intracranial structures. This technique could be investigated as a potential biomarker for development of reliable dose constraints for improved cognitive outcomes.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Hipocampo/efectos de la radiación , Imagen por Resonancia Magnética/métodos , Adulto , Factores de Edad , Anciano , Atrofia/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Fraccionamiento de la Dosis de Radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Masculino , Trastornos de la Memoria/etiología , Persona de Mediana Edad , Análisis Multivariante , Tamaño de los Órganos/efectos de la radiación , Estudios Retrospectivos , Factores de Tiempo
5.
Int J Radiat Oncol Biol Phys ; 97(5): 910-918, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28333012

RESUMEN

PURPOSE AND OBJECTIVES: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. METHODS AND MATERIALS: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. RESULTS: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). CONCLUSIONS: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations that brain radiation patients experience deficits in domains of memory, executive function, and attention. Correlations of regional cortical atrophy with domain-specific cognitive functioning in prospective trials are warranted.


Asunto(s)
Corteza Cerebral/patología , Corteza Cerebral/efectos de la radiación , Irradiación Craneana/efectos adversos , Imagen por Resonancia Magnética/métodos , Traumatismos por Radiación/etiología , Traumatismos por Radiación/patología , Adulto , Anciano , Atrofia/etiología , Atrofia/patología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Relación Dosis-Respuesta en la Radiación , Humanos , Persona de Mediana Edad , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA