Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biomed Eng Online ; 22(1): 22, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890566

RESUMEN

Signal analysis is a domain which is an amalgamation of different processes coming together to form robust pipelines for the automation of data analysis. When applied to the medical world, physiological signals are used. It is becoming increasingly common in today's day and age to be working with very large datasets, on the scale of having thousands of features. This is largely due to the fact that the acquisition of biomedical signals can be taken over multi-hour timeframes, which is another challenge to solve in and of itself. This paper will focus on the electrocardiogram (ECG) signal specifically, and common feature extraction techniques used for digital health and artificial intelligence (AI) applications. Feature extraction is a vital step of biomedical signal analysis. The basic goal of feature extraction is for signal dimensionality reduction and data compaction. In simple terms, this would allow one to represent data with a smaller subset of features; these features could then later be leveraged to be used more efficiently for machine learning and deep learning models for applications, such as classification, detection, and automated applications. In addition, the redundant data in the overall dataset is filtered out as the data is reduced during feature extraction. In this review, we cover ECG signal processing and feature extraction in the time domain, frequency domain, time-frequency domain, decomposition, and sparse domain. We also provide pseudocode for the methods discussed so that they can be replicated by practitioners and researchers in their specific areas of biomedical work. Furthermore, we discuss deep features, and machine learning integration, to complete the overall pipeline design for signal analysis. Finally, we discuss future work that can be innovated upon in the feature extraction domain for ECG signal analysis.


Asunto(s)
Algoritmos , Inteligencia Artificial , Procesamiento de Señales Asistido por Computador , Electrocardiografía , Aprendizaje Automático
2.
Sensors (Basel) ; 22(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35746121

RESUMEN

COVID-19 occurs due to infection through respiratory droplets containing the SARS-CoV-2 virus, which are released when someone sneezes, coughs, or talks. The gold-standard exam to detect the virus is Real-Time Polymerase Chain Reaction (RT-PCR); however, this is an expensive test and may require up to 3 days after infection for a reliable result, and if there is high demand, the labs could be overwhelmed, which can cause significant delays in providing results. Biomedical data (oxygen saturation level-SpO2, body temperature, heart rate, and cough) are acquired from individuals and are used to help infer infection by COVID-19, using machine learning algorithms. The goal of this study is to introduce the Integrated Portable Medical Assistant (IPMA), which is a multimodal piece of equipment that can collect biomedical data, such as oxygen saturation level, body temperature, heart rate, and cough sound, and helps infer the diagnosis of COVID-19 through machine learning algorithms. The IPMA has the capacity to store the biomedical data for continuous studies and can be used to infer other respiratory diseases. Quadratic kernel-free non-linear Support Vector Machine (QSVM) and Decision Tree (DT) were applied on three datasets with data of cough, speech, body temperature, heart rate, and SpO2, obtaining an Accuracy rate (ACC) and Area Under the Curve (AUC) of approximately up to 88.0% and 0.85, respectively, as well as an ACC up to 99% and AUC = 0.94, respectively, for COVID-19 infection inference. When applied to the data acquired with the IMPA, these algorithms achieved 100% accuracy. Regarding the easiness of using the equipment, 36 volunteers reported that the IPMA has a high usability, according to results from two metrics used for evaluation: System Usability Scale (SUS) and Post Study System Usability Questionnaire (PSSUQ), with scores of 85.5 and 1.41, respectively. In light of the worldwide needs for smart equipment to help fight the COVID-19 pandemic, this new equipment may help with the screening of COVID-19 through data collected from biomedical signals and cough sounds, as well as the use of machine learning algorithms.


Asunto(s)
COVID-19 , Algoritmos , COVID-19/diagnóstico , Tos/diagnóstico , Humanos , Aprendizaje Automático , Pandemias , SARS-CoV-2
3.
Sensors (Basel) ; 21(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809317

RESUMEN

Recently, studies on cycling-based brain-computer interfaces (BCIs) have been standing out due to their potential for lower-limb recovery. In this scenario, the behaviors of the sensory motor rhythms and the brain connectivity present themselves as sources of information that can contribute to interpreting the cortical effect of these technologies. This study aims to analyze how sensory motor rhythms and cortical connectivity behave when volunteers command reactive motor imagery (MI) BCI that provides passive pedaling feedback. We studied 8 healthy subjects who performed pedaling MI to command an electroencephalography (EEG)-based BCI with a motorized pedal to receive passive movements as feedback. The EEG data were analyzed under the following four conditions: resting, MI calibration, MI online, and receiving passive pedaling (on-line phase). Most subjects produced, over the foot area, significant event-related desynchronization (ERD) patterns around Cz when performing MI and receiving passive pedaling. The sharpest decrease was found for the low beta band. The connectivity results revealed an exchange of information between the supplementary motor area (SMA) and parietal regions during MI and passive pedaling. Our findings point to the primary motor cortex activation for most participants and the connectivity between SMA and parietal regions during pedaling MI and passive pedaling.


Asunto(s)
Interfaces Cerebro-Computador , Excitabilidad Cortical , Corteza Motora , Electroencefalografía , Humanos , Imaginación
4.
Sensors (Basel) ; 20(13)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630685

RESUMEN

The tremendous progress of big data acquisition and processing in the field of neural engineering has enabled a better understanding of the patient's brain disorders with their neural rehabilitation, restoration, detection, and diagnosis. An integration of compressive sensing (CS) and neural engineering emerges as a new research area, aiming to deal with a large volume of neurological data for fast speed, long-term, and energy-saving purposes. Furthermore, electroencephalography (EEG) signals for brain-computer interfaces (BCIs) have shown to be very promising, with diverse neuroscience applications. In this review, we focused on EEG-based approaches which have benefited from CS in achieving fast and energy-saving solutions. In particular, we examine the current practices, scientific opportunities, and challenges of CS in the growing field of BCIs. We emphasized on summarizing major CS reconstruction algorithms, the sparse basis, and the measurement matrix used in CS to process the EEG signal. This literature review suggests that the selection of a suitable reconstruction algorithm, sparse basis, and measurement matrix can help to improve the performance of current CS-based EEG studies. In this paper, we also aim at providing an overview of the reconstruction free CS approach and the related literature in the field. Finally, we discuss the opportunities and challenges that arise from pushing the integration of the CS framework for BCI applications.


Asunto(s)
Interfaces Cerebro-Computador , Compresión de Datos , Electroencefalografía , Procesamiento de Señales Asistido por Computador , Algoritmos , Humanos
5.
Sensors (Basel) ; 18(11)2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405026

RESUMEN

As the life expectancy of individuals increases with recent advancements in medicine and quality of living, it is important to monitor the health of patients and healthy individuals on a daily basis. This is not possible with the current health care system in North America, and thus there is a need for wireless devices that can be used from home. These devices are called biomedical wearables, and they have become popular in the last decade. There are several reasons for that, but the main ones are: expensive health care, longer wait times, and an increase in public awareness about improving quality of life. With this, it is vital for anyone working on wearables to have an overall understanding of how they function, how they were designed, their significance, and what factors were considered when the hardware was designed. Therefore, this study attempts to investigate the hardware components that are required to design wearable devices that are used in the emerging context of the Internet of Medical Things (IoMT). This means that they can be used, to an extent, for disease monitoring through biosignal capture. In particular, this review study covers the basic components that are required for the front-end of any biomedical wearable, and the limitations that these wearable devices have. Furthermore, there is a discussion of the opportunities that they create, and the direction that the wearable industry is heading in.


Asunto(s)
Internet/instrumentación , Monitoreo Fisiológico/instrumentación , Dispositivos Electrónicos Vestibles , Humanos , Monitoreo Fisiológico/métodos , Calidad de Vida
6.
Sensors (Basel) ; 18(9)2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30200566

RESUMEN

Actigraphs for personalized health and fitness monitoring is a trending niche market and fit aptly in the Internet of Medical Things (IoMT) paradigm. Conventionally, actigraphy is acquired and digitized using standard low pass filtering and quantization techniques. High sampling frequencies and quantization resolution of various actigraphs can lead to memory leakage and unwanted battery usage. Our systematic investigation on different types of actigraphy signals yields that lower levels of quantization are sufficient for acquiring and storing vital movement information while ensuring an increase in SNR, higher space savings, and in faster time. The objective of this study is to propose a low-level signal encoding method which could improve data acquisition and storage in actigraphs, as well as enhance signal clarity for pattern classification. To further verify this study, we have used a machine learning approach which suggests that signal encoding also improves pattern recognition accuracy. Our experiments indicate that signal encoding at the source results in an increase in SNR (signal-to-noise ratio) by at least 50⁻90%, coupled with a bit rate reduction by 50⁻80%, and an overall space savings in the range of 68⁻92%, depending on the type of actigraph and application used in our study. Consistent improvements by lowering the quantization factor also indicates that a 3-bit encoding of actigraphy data retains most prominent movement information, and also results in an increase of the pattern recognition accuracy by at least 10%.


Asunto(s)
Actigrafía/métodos , Salud , Actividades Humanas , Monitoreo Ambulatorio/métodos , Dispositivos Electrónicos Vestibles , Humanos , Aprendizaje Automático , Reconocimiento de Normas Patrones Automatizadas , Relación Señal-Ruido
7.
J Sleep Res ; 26(1): 14-20, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27457202

RESUMEN

Actigraphy can assist in the detection of periodic limb movements in sleep. Although several actigraphs have been previously reported to accurately detect periodic limb movements, many are no longer available; of the existing actigraphs, most sample too infrequently to accurately detect periodic limb movements. The purpose of this study was to use advanced signal analysis to validate a readily available actigraph that has the capability of sampling at relatively high frequencies. We simultaneously recorded polysomnography and bilateral ankle actigraphy in 96 consecutive patients presenting to our sleep laboratory. After pre-processing and conditioning, the bilateral ankle actigraphy signals were then analysed for 14 simple time, frequency and morphology-based features. These features reduced the signal dimensionality and aided in better representation of the periodic limb movement activity in the actigraph signals. These features were then processed by a Naïve-Bayes binary classifier for distinguishing between normal and abnormal periodic limb movement indices. We trained the Naïve-Bayes classifier using a training set, and subsequently tested its classification accuracy using a testing set. From our experiments, using a periodic limb movement index cut-off of 5, we found that the Naïve-Bayes classifier had a correct classification rate of 78.9%, with a sensitivity of 80.3% and a specificity of 73.7%. The algorithm developed in this study has the potential of facilitating identification of periodic limb movements across a wide spectrum of patient populations via the use of bilateral ankle actigraphy.


Asunto(s)
Actigrafía/métodos , Tobillo/inervación , Síndrome de Mioclonía Nocturna/diagnóstico , Polisomnografía/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
8.
Sensors (Basel) ; 17(12)2017 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-29186848

RESUMEN

This work presents a new on-line adaptive filter, which is based on a similarity analysis between standard electrode locations, in order to reduce artifacts and common interferences throughout electroencephalography (EEG) signals, but preserving the useful information. Standard deviation and Concordance Correlation Coefficient (CCC) between target electrodes and its correspondent neighbor electrodes are analyzed on sliding windows to select those neighbors that are highly correlated. Afterwards, a model based on CCC is applied to provide higher values of weight to those correlated electrodes with lower similarity to the target electrode. The approach was applied to brain computer-interfaces (BCIs) based on Canonical Correlation Analysis (CCA) to recognize 40 targets of steady-state visual evoked potential (SSVEP), providing an accuracy (ACC) of 86.44 ± 2.81%. In addition, also using this approach, features of low frequency were selected in the pre-processing stage of another BCI to recognize gait planning. In this case, the recognition was significantly ( p < 0.01 ) improved for most of the subjects ( A C C ≥ 74.79 % ) , when compared with other BCIs based on Common Spatial Pattern, Filter Bank-Common Spatial Pattern, and Riemannian Geometry.

9.
Crit Rev Biomed Eng ; 43(1): 1-20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26351020

RESUMEN

Sleep and sleep-related problems play a role in a large number of human disorders and affect every field of medicine. It is estimated that 50 to 70 million Americans suffer from a chronic sleep disorder, which hinders their daily life, affects their health, and confers a significant economic burden to society. The negative public health consequences of sleep disorders are enormous and could have long-term effects, including increased risk of hypertension, diabetes, obesity, heart attack, stroke and in some cases death. Polysomnographic modalities can monitor sleep cycles to identify disrupted sleep patterns, adjust the treatments, increase therapeutic options and enhance the quality of life of recording the electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG). Although the skills acquired by medical facilitators are quite extensive, it is just as important for them to have access to an assortment of technologies and to further improve their monitoring and treatment capabilities. Computer-aided analysis is one advantageous technique that could provide quantitative indices for sleep disorder screening. Evolving evidence suggests that Parkinson's disease may be associated with rapid eye movement sleep behavior disorder (RBD). With this article, we are reviewing studies that are related to EMG signal analysis for detection of neuromuscular diseases that result from sleep movement disorders. As well, the article describes the recent progress in analysis of EMG signals using temporal analysis, frequency-domain analysis, time-frequency, and sparse representations, followed by the comparison of the recent research.


Asunto(s)
Electromiografía/métodos , Procesamiento de Señales Asistido por Computador , Trastornos del Sueño-Vigilia/diagnóstico , Algoritmos , Análisis de Fourier , Humanos , Neuroimagen/métodos , Polisomnografía/métodos , Trastorno de la Conducta del Sueño REM/diagnóstico , Trastorno de la Conducta del Sueño REM/fisiopatología , Vigilia
10.
ScientificWorldJournal ; 2014: 419308, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24550706

RESUMEN

Classification of electroencephalography (EEG) is the most useful diagnostic and monitoring procedure for epilepsy study. A reliable algorithm that can be easily implemented is the key to this procedure. In this paper a novel signal feature extraction method based on dynamic principal component analysis and nonoverlapping moving window is proposed. Along with this new technique, two detection methods based on extracted sparse features are applied to deal with signal classification. The obtained results demonstrated that our proposed methodologies are able to differentiate EEGs from controls and interictal for epilepsy diagnosis and to separate EEGs from interictal and ictal for seizure detection. Our approach yields high classification accuracy for both single-channel short-term EEGs and multichannel long-term EEGs. The classification performance of the method is also compared with other state-of-the-art techniques on the same datasets and the effect of signal variability on the presented methods is also studied.


Asunto(s)
Electroencefalografía , Epilepsia/diagnóstico , Algoritmos , Humanos , Análisis de Componente Principal , Reproducibilidad de los Resultados , Convulsiones/diagnóstico
11.
Sensors (Basel) ; 14(12): 24305-28, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25526357

RESUMEN

Surface Electromyography (sEMG) is a non-invasive measurement process that does not involve tools and instruments to break the skin or physically enter the body to investigate and evaluate the muscular activities produced by skeletal muscles. The main drawbacks of existing sEMG systems are: (1) they are not able to provide real-time monitoring; (2) they suffer from long processing time and low speed; (3) they are not effective for wireless healthcare systems because they consume huge power. In this work, we present an analog-based Compressed Sensing (CS) architecture, which consists of three novel algorithms for design and implementation of wearable wireless sEMG bio-sensor. At the transmitter side, two new algorithms are presented in order to apply the analog-CS theory before Analog to Digital Converter (ADC). At the receiver side, a robust reconstruction algorithm based on a combination of ℓ1-ℓ1-optimization and Block Sparse Bayesian Learning (BSBL) framework is presented to reconstruct the original bio-signals from the compressed bio-signals. The proposed architecture allows reducing the sampling rate to 25% of Nyquist Rate (NR). In addition, the proposed architecture reduces the power consumption to 40%, Percentage Residual Difference (PRD) to 24%, Root Mean Squared Error (RMSE) to 2%, and the computation time from 22 s to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. The proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR) for the reconstruction process.


Asunto(s)
Técnicas Biosensibles/métodos , Electromiografía/métodos , Tecnología Inalámbrica , Algoritmos , Humanos , Procesamiento de Señales Asistido por Computador
12.
Cureus ; 16(2): e53450, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38435150

RESUMEN

Healthcare providers, particularly during the COVID-19 crisis, have been forced to make difficult decisions and have reported acting in ways that are contrary to their moral values, integrity, and professional commitments, given the constraints in their work environments. Those actions and decisions may lead to healthcare providers' moral suffering and distress. This work outlines the development of the Moral Distress Virtual Reality Simulator (Moral Distress VRS) to research stress and moral distress among healthcare workers during the COVID-19 pandemic. The Moral Distress VRS was developed based on the agile methodology framework, with three simultaneous development streams. It followed a two-week sprint cycle, ending with meetings with stakeholders and subject matter experts, whereby the project requirements, scope, and features were revised, and feedback was provided on the prototypes until reaching the final prototype that was deployed for in-person study sessions. The final prototype had two user interfaces (UIs), one for the participant and one for the researcher, with voice narration and customizable character models wearing medical personal protective equipment, and followed a tree-based dialogue scenario, outputting a video recording of the session. The virtual environment replicated an ICU nursing station and a fully equipped patient room. We present the development process that guided this project, how different teams worked together and in parallel, and detail the decisions and outcomes in creating each major component within a limited deadline. Finally, we list the most significant challenges and difficulties faced and recommendations on how to solve them.

13.
JMIR Serious Games ; 12: e42813, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194247

RESUMEN

BACKGROUND: The COVID-19 pandemic has challenged the mental health of health care workers, increasing the rates of stress, moral distress (MD), and moral injury (MI). Virtual reality (VR) is a useful tool for studying MD and MI because it can effectively elicit psychophysiological responses, is customizable, and permits the controlled study of participants in real time. OBJECTIVE: This study aims to investigate the feasibility of using an intervention comprising a VR scenario and an educational video to examine MD among health care workers during the COVID-19 pandemic and to use our mobile app for longitudinal monitoring of stress, MD, and MI after the intervention. METHODS: We recruited 15 participants for a compound intervention consisting of a VR scenario followed by an educational video and a repetition of the VR scenario. The scenario portrayed a morally challenging situation related to a shortage of life-saving equipment. Physiological signals and scores of the Moral Injury Outcome Scale (MIOS) and Perceived Stress Scale (PSS) were collected. Participants underwent a debriefing session to provide their impressions of the intervention, and content analysis was performed on the sessions. Participants were also instructed to use a mobile app for 8 weeks after the intervention to monitor stress, MD, and mental health symptoms. We conducted Wilcoxon signed rank tests on the PSS and MIOS scores to investigate whether the VR scenario could induce stress and MD. We also evaluated user experience and the sense of presence after the intervention through semi-open-ended feedback and the Igroup Presence Questionnaire, respectively. Qualitative feedback was summarized and categorized to offer an experiential perspective. RESULTS: All participants completed the intervention. Mean pre- and postintervention scores were respectively 10.4 (SD 9.9) and 13.5 (SD 9.1) for the MIOS and 17.3 (SD 7.5) and 19.1 (SD 8.1) for the PSS. Statistical analyses revealed no significant pre- to postintervention difference in the MIOS and PSS scores (P=.11 and P=.22, respectively), suggesting that the experiment did not acutely induce significant levels of stress or MD. However, content analysis revealed feelings of guilt, shame, and betrayal, which relate to the experience of MD. On the basis of the Igroup Presence Questionnaire results, the VR scenario achieved an above-average degree of overall presence, spatial presence, and involvement, and slightly below-average realism. Of the 15 participants, 8 (53%) did not answer symptom surveys on the mobile app. CONCLUSIONS: Our study demonstrated VR to be a feasible method to simulate morally challenging situations and elicit genuine responses associated with MD with high acceptability and tolerability. Future research could better define the efficacy of VR in examining stress, MD, and MI both acutely and in the longer term. An improved participant strategy for mobile data capture is needed for future studies. TRIAL REGISTRATION: ClinicalTrails.gov NCT05001542; https://clinicaltrials.gov/study/NCT05001542. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/32240.

14.
JMIR Res Protoc ; 13: e54180, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709554

RESUMEN

BACKGROUND: Staffing and resource shortages, especially during the COVID-19 pandemic, have increased stress levels among health care workers. Many health care workers have reported feeling unable to maintain the quality of care expected within their profession, which, at times, may lead to moral distress and moral injury. Currently, interventions for moral distress and moral injury are limited. OBJECTIVE: This study has the following aims: (1) to characterize and reduce stress and moral distress related to decision-making in morally complex situations using a virtual reality (VR) scenario and a didactic intervention; (2) to identify features contributing to mental health outcomes using wearable, physiological, and self-reported questionnaire data; and (3) to create a personal digital phenotype profile that characterizes stress and moral distress at the individual level. METHODS: This will be a single cohort, pre- and posttest study of 100 nursing professionals in Ontario, Canada. Participants will undergo a VR simulation that requires them to make morally complex decisions related to patient care, which will be administered before and after an educational video on techniques to mitigate distress. During the VR session, participants will complete questionnaires measuring their distress and moral distress, and physiological data (electrocardiogram, electrodermal activity, plethysmography, and respiration) will be collected to assess their stress response. In a subsequent 12-week follow-up period, participants will complete regular assessments measuring clinical outcomes, including distress, moral distress, anxiety, depression, and loneliness. A wearable device will also be used to collect continuous data for 2 weeks before, throughout, and for 12 weeks after the VR session. A pre-post comparison will be conducted to analyze the effects of the VR intervention, and machine learning will be used to create a personal digital phenotype profile for each participant using the physiological, wearable, and self-reported data. Finally, thematic analysis of post-VR debriefing sessions and exit interviews will examine reoccurring codes and overarching themes expressed across participants' experiences. RESULTS: The study was funded in 2022 and received research ethics board approval in April 2023. The study is ongoing. CONCLUSIONS: It is expected that the VR scenario will elicit stress and moral distress. Additionally, the didactic intervention is anticipated to improve understanding of and decrease feelings of stress and moral distress. Models of digital phenotypes developed and integrated with wearables could allow for the prediction of risk and the assessment of treatment responses in individuals experiencing moral distress in real-time and naturalistic contexts. This paradigm could also be used in other populations prone to moral distress and injury, such as military and public safety personnel. TRIAL REGISTRATION: ClinicalTrials.gov NCT05923398; https://clinicaltrials.gov/study/NCT05923398. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/54180.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Estudios de Cohortes , Estrés Psicológico , Realidad Virtual , Ontario , Encuestas y Cuestionarios , Femenino , Masculino , Adulto , Estrés Laboral
15.
Bioengineering (Basel) ; 10(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37508793

RESUMEN

Stress is induced in response to any mental, physical or emotional change associated with our daily experiences. While short term stress can be quite beneficial, prolonged stress is detrimental to the heart, muscle tissues and immune system. In order to be proactive against these symptoms, it is important to assess the impact of stress due to various activities, which is initially determined through the change in the sympathetic (SNS) and parasympathetic (PNS) nervous systems. After acquiring physiological data wirelessly through captive electrocardiogram (ECG), galvanic skin response (GSR) and respiration (RESP) sensors, 21 time, frequency, nonlinear, GSR and respiration features were manually extracted from 15 subjects ensuing a baseline phase, virtual reality (VR) roller coaster simulation, color Stroop task and VR Bubble Bloom game. This paper presents a comprehensive physiological analysis of stress from an experiment involving a VR video game Bubble Bloom to manage stress levels. A personalized classification and regression tree (CART) model was developed using a novel Gini index algorithm in order to effectively classify binary classes of stress. A novel K-means feature was derived from 11 other features and used as an input in the Decision Tree (DT) algorithm, strong learners Ensemble Gradient Boosting (EGB) and Extreme Gradient Boosting (XGBoost (XGB)) embedded in a pipeline to classify 5 classes of stress. Results obtained indicate that heart rate (HR), approximate entropy (ApEN), low frequency and high frequency ratio (LF/HF), low frequency (LF), standard deviation (SD1), GSR and RESP all reduced and high frequency (HF) increased following the VR Bubble Bloom game phase. The personalized CART model was able to classify binary stress with 87.75% accuracy. It proved to be more effective than other related studies. EGB was able to classify binary stress with 100% accuracy, which outperformed every other related study. XGBoost and DT were able to classify five classes of stress with 72.22% using the novel K-means feature. This feature produced less error and better model performance in comparison to using all the features. Results substantiate that our proposed methods were more effective for stress classification than most related studies.

16.
JMIR Res Protoc ; 12: e45512, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37782528

RESUMEN

BACKGROUND: Over 10 million newborns worldwide undergo resuscitation at birth each year. Pediatricians may use electrocardiogram (ECG), pulse oximetry (PO), and stethoscope in determining heart rate (HR), as HR guides the need for and steps of resuscitation. HR must be obtained quickly and accurately. Unfortunately, the current diagnostic modalities are either too slow, obtaining HR in more than a minute, or inaccurate. With time constraints, a reliable robust heart rate detector (HRD) modality is required. This paper discusses a protocol for conducting a methods-based comparison study to determine the HR accuracy of a novel real-time HRD based on 3D-printed dry-electrode single-lead ECG signals for cost-effective and quick HR determination. The HRD's HR results are compared to either clinical-grade ECG or PO monitors to ensure robustness and accuracy. OBJECTIVE: The purpose of this study is to design and examine the feasibility of a proof-of-concept HRD that quickly obtains HR using biocompatible 3D-printed dry electrodes for single-lead neonatal ECG acquisition. This study uses a novel HRD and compares it to the gold-standard 3-lead clinical ECG or PO in a hospital setting. METHODS: A cross-sectional study is planned to be conducted in the neonatal intensive care unit or postpartum unit of a large community teaching hospital in Toronto, Canada, from June 2023 to June 2024. In total, 50 newborns will be recruited for this study. The HRD and an ECG or PO monitor will be video recorded using a digital camera concurrently for 3 minutes for each newborn. Hardware-based signal processing and patent-pending embedded algorithm-based HR estimation techniques are applied directly to the raw collected single-lead ECG and displayed on the HRD in real time during video recordings. These data will be annotated and compared to the ECG or PO readings at the same points in time. Accuracy, F1-score, and other statistical metrics will be produced to determine the HRD's feasibility in providing reliable HR. RESULTS: The study is ongoing. The projected end date for data collection is around July 2024. CONCLUSIONS: The study will compare the novel patent-pending 3D-printed dry electrode-based HRD's real-time HR estimation techniques with the state-of-the-art clinical-grade ECG or PO monitors for HR accuracy and examines how fast the HRD provides reliable HR. The study will further provide recommendations and important improvements that can be made to implement the HRD for clinical applications, especially in neonatal resuscitation efforts. This work can be seen as a stepping stone in the development of robust dry-electrode single-lead ECG devices for HR estimations in the pediatric population. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/45512.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38083372

RESUMEN

Due to the constraints of the COVID-19 pandemic, healthcare workers have reported behaving in ways that are contrary to their values, which may result in distress and injury. This work is the first of its kind to evaluate the presence of stress in the COVID-19 VR Healthcare Simulation for Distress dataset. The dataset collected passive physiological signals and active mental health questionnaires. This paper focuses on correlating electrocardiogram, respiration, photoplethysmography, and galvanic skin response with the Perceived Stress Scale (PSS)-10 questionnaire. The analysis involved data-driven techniques for a robust evaluation of stress among participants. Low-complexity pre-processing and feature extraction techniques were applied and support vector machine and decision tree models were created to predict the PSS-10 scores of users. Imbalanced data classification techniques were used to further enhance our understanding of the results. Decision tree with oversampling through Synthetic Minority Oversampling Technique achieved an accuracy, precision, recall, and F1 of 93.50%, 93.41%, 93.31%, and 93.35%, respectively. Our findings offer novel results and clinically valuable insights for stress detection and potential for translation to edge computing applications to enhance privacy, longitudinal monitoring, and simplify device requirements.


Asunto(s)
COVID-19 , Pandemias , Humanos , COVID-19/epidemiología , Personal de Salud/psicología , Estrés Psicológico/diagnóstico
18.
Comput Methods Programs Biomed ; 240: 107645, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37352806

RESUMEN

BACKGROUND AND OBJECTIVE: Due to the constraints of the COVID-19 pandemic, healthcare workers have reported acting in ways that are contrary to their moral values, and this may result in moral distress. This paper proposes the novel digital phenotype profile (DPP) tool, developed specifically to evaluate stress experiences within participants. The DPP tool was evaluated using the COVID-19 VR Healthcare Simulation of Stress Experience (HSSE) dataset (NCT05001542), which is composed of passive physiological signals and active mental health questionnaires. The DPP tool focuses on correlating electrocardiogram, respiration, photoplethysmography, and galvanic skin response with moral injury outcome scale (Brief MIOS). METHODS: Data-driven techniques are encompassed to develop a tool for robust evaluation of distress among participants. To accomplish this, we applied pre-processing techniques which involved normalization, data sanitation, segmentation, and windowing. During feature analysis, we extracted domain-specific features, followed by feature selection techniques to rank the importance of the feature set. Prior to classification, we employed k-means clustering to group the Brief MIOS scores to low, moderate, and high moral distress as the Brief MIOS lacks established severity cut-off scores. Support vector machine and decision tree models were used to create machine learning models to predict moral distress severities. RESULTS: Weighted support vector machine with leave-one-subject-out-cross-validation evaluated the separation of the Brief MIOS scores and achieved an average accuracy, precision, sensitivity, and F1 of 98.67%, 98.83%, 99.44%, and 99.13%, respectively. Various machine learning ablation tests were performed to support our results and further enhance the understanding of the predictive model. CONCLUSION: Our findings demonstrate the feasibility to develop a DPP tool to predict distress experiences using a combination of mental health questionnaires and passive signals. The DPP tool is the first of its kind developed from the analysis of the HSSE dataset. Additional validation is needed for the DPP tool through replication in larger sample sizes.


Asunto(s)
COVID-19 , Humanos , Pandemias , Personal de Salud/psicología , Aprendizaje Automático , Fenotipo
19.
Crit Rev Biomed Eng ; 40(1): 63-95, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22428799

RESUMEN

Acoustical measures of vocal function are important in the assessments of disordered voice, and for monitoring patients' progress over the course of voice therapy. In the last 2 decades, a variety of techniques for automatic pathological voice detection have been proposed, ranging from traditional temporal or spectral approaches to advanced time-frequency techniques. However, comparison of these methods is a difficult task because of the diversity of approaches. In this article, we explain a framework that holds the existing methods. In the light of this framework, the methodologic principles of disordered voice analysis schemes are compared and discussed. In addition, this article presents a comprehensive review to demonstrate the advantages of time-frequency approaches in analyzing and extracting pathological structures from speech signals. This information may have an important role in the development of new approaches to this problem.


Asunto(s)
Algoritmos , Diagnóstico por Computador/métodos , Espectrografía del Sonido/métodos , Trastornos del Habla/diagnóstico , Medición de la Producción del Habla/métodos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Comput Methods Programs Biomed ; 213: 106518, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34808531

RESUMEN

BACKGROUND AND OBJECTIVE: Detection and analysis of QRS-complex as well as the processing of electrocardiogram (ECG) signal using computers are being practiced for over the last fifty-eight years, approximately, and yet the thirst of designing superior ECG processing and recognition algorithms still captures researchers' attention around the globe. A saliency detection-based technique for the processing of one-dimensional biomedical signals such as ECG is proposed here for the first time, to the best or our knowledge. METHODS AND RESULTS: In this proposed research work, first, a trigonometric threshold-based technique is used to identify the QRS-complexes from the ECG signal. Motion-artifact (MA) and sudden-change-in-baseline (SCB) types of noises are considered to be the toughest among others to filter out from the ECG signals as the bandwidths of these two types of noises overlap with that of the ECG. Only one feature is extracted from each of the QRS-complex-intervals, and the normalised values of this feature are arranged in the form of a gray-scale image. Then, a saliency detection-based technique is applied iteratively on the gray-scale image to detect those regions of the ECG signals, which are highly corrupted with MA and (or) SCB noises. Next, three unique geometric-features are extracted from the rest of the QRS-complexes, which are not corrupted with MA or SCB noises, and the normalised values of these three features are arranged in the form of an Red-Green-Blue (RGB) image. Again, the saliency detection-based technique is applied to identify the abnormal QRS-complexes from the RGB image. CONCLUSIONS: The technique is tested on long-term ECG signals; totaling a duration of 17.54 days, and its performance is evaluated through both quantitative and qualitative measures. The applicability, scope of implement in real-time scenarios, advantage of the proposed technique over the existing ones are discussed with a group of clinicians and cardiologists, and very affirmative and encouraging responses are received from them.


Asunto(s)
Electrocardiografía , Procesamiento de Señales Asistido por Computador , Algoritmos , Arritmias Cardíacas , Artefactos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA