Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38607341

RESUMEN

Cardiac hypertrophy is a common feature in several cardiomyopathies. We previously reported that loss of ADAM15 (disintegrin and metalloproteinase 15) worsened cardiac hypertrophy and dilated cardiomyopathy following cardiac pressure overload. Here, we investigated the impact of ADAM15 loss in female mice following cardiac pressure overload induced by transverse aortic constriction (TAC). Female Adam15-/-mice developed the same degree of cardiac hypertrophy, dilation and dysfunction as the parallel female wildtype (WT) mice at 6 weeks post-TAC. To determine if this is due to the protective effects of estrogen which could mask the negative impact of Adam15 loss, WT and Adam15-/- mice underwent ovariectomy (OVx) 2 weeks prior to TAC. Cardiac structure and function analyses were performed at 6 weeks post-TAC. OVx similarly impacted females of both genotypes post-TAC. Calcineurin (Cn) activity was increased post-OVx-TAC, and more in Adam15-/- mice, however this increase was not reflected in the total-to-phospho NFAT levels. Integrin α7 expression, which was upstream of Cn activation in male Adam15-/--TAC mice, remained unchanged in female mice. However, activation of the Mitogen Activated Protein Kinases (ERK, JNK, P38) were greater in Adam15-/--OVx-TAC compared to WT-OVx-TAC mice. In addition, ADAM15 protein levels were significantly increased post-TAC in male but not in female WT mice. Myocardial fibrosis was comparable in non-OVx WT-TAC and Adam15-/--TAC mice. OVx increased the perivascular fibrosis more in Adam15-/- compared to WT mice post-TAC. Our data demonstrate that loss of ovarian hormones did not fully replicate the male phenotype in the female Adam15-/- mice post-TAC. Since ADAM15 levels were increased in males but not in females post-TAC, it is plausible that ADAM15 does not play a prominent role in post-TAC events in female mice. Our findings highlight the significance of factors other than sex hormones in mediating cardiomyopathies in females, which require a more thorough understanding.

2.
BMC Biol ; 19(1): 95, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33957926

RESUMEN

BACKGROUND: Target of Rapamycin Complex 1 (TORC1) is a highly conserved eukaryotic protein complex that couples the presence of growth factors and nutrients in the environment with cellular proliferation. TORC1 is primarily implicated in linking amino acid levels with cellular growth in yeast and mammals. Although glucose deprivation has been shown to cause TORC1 inactivation in yeast, the precise role of TORC1 in glucose signaling and the underlying mechanisms remain unclear. RESULTS: We demonstrate that the presence of glucose in the growth medium is both necessary and sufficient for TORC1 activation. TORC1 activity increases upon addition of glucose to yeast cells growing in a non-fermentable carbon source. Conversely, shifting yeast cells from glucose to a non-fermentable carbon source reduces TORC1 activity. Analysis of transcriptomic data revealed that glucose and TORC1 co-regulate about 27% (1668/6004) of yeast genes. We demonstrate that TORC1 orchestrates the expression of glucose-responsive genes mainly via the Tap42-Sit4-Rrd1/2 pathway. To confirm TORC1's function in glucose signaling, we tested its role in spore germination, a glucose-dependent developmental state transition in yeast. TORC1 regulates the glucose-responsive genes during spore germination and inhibition of TORC1 blocks spore germination. CONCLUSIONS: Our studies indicate that a regulatory loop that involves activation of TORC1 by glucose and regulation of glucose-responsive genes by TORC1, mediates nutritional control of growth and development in yeast.


Asunto(s)
Saccharomyces cerevisiae , Proteínas Adaptadoras Transductoras de Señales , Carbono , Glucosa , Péptidos y Proteínas de Señalización Intracelular , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Isomerasa de Peptidilprolil , Proteína Fosfatasa 2/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Perinat Med ; 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171001

RESUMEN

Background Preeclampsia (PE) is a pregnancy-specific vascular endothelial disorder characterized by multi-organ system involvement. This includes the maternal kidneys, with changes such as continuous vasospasm of renal arteries and reduced renal blood flow. However, it is unclear whether similar renal vascular changes are seen in the fetus. This study sought to compare renal artery impedance in fetuses of women with and without PE. Methods This was a prospective Doppler assessment study of the fetal renal artery impedance in 48 singleton fetuses. The group with PE consisted of 24 appropriately grown fetuses in pregnancy complicated by both mild and severe PE and a control group of 24 uncomplicated pregnancies. Doppler studies included renal artery systolic/diastolic (S/D) ratio, pulsatility index (PI), resistance index (RI), and identification of end-diastolic blood flow. Results Fetuses of mothers with PE were more likely to have a lower renal artery Doppler S/D ratio (7.85 [6.4-10.2] vs. 10.8 [7.75-22.5], P = 0.03) and lower RI (0.875 [0.842-0.898] vs. 0.905 [0.872-0.957], P = 0.03). However, there was no statistically significant difference in PI. There was also no difference in the incidence of absent end-diastolic flow. Conclusion This study suggests that PE results in changes in blood flow to the renal arteries of the fetus. This may be associated with long-term adverse health effects later in adulthood.

4.
J Neurosci ; 33(34): 13882-7, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23966707

RESUMEN

Injury to the CNS leads to formation of scar tissue, which is important in sealing the lesion and inhibiting axon regeneration. The fibrotic scar that comprises a dense extracellular matrix is thought to originate from meningeal cells surrounding the CNS. However, using transgenic mice, we demonstrate that perivascular collagen1α1 cells are the main source of the cellular composition of the fibrotic scar after contusive spinal cord injury in which the dura remains intact. Using genetic lineage tracing, light sheet fluorescent microscopy, and antigenic profiling, we identify collagen1α1 cells as perivascular fibroblasts that are distinct from pericytes. Our results identify collagen1α1 cells as a novel source of the fibrotic scar after spinal cord injury and shift the focus from the meninges to the vasculature during scar formation.


Asunto(s)
Cicatriz/etiología , Fibroblastos/patología , Pericitos/patología , Traumatismos de la Médula Espinal/complicaciones , Análisis de Varianza , Animales , Antígenos/genética , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Antígenos CD13/metabolismo , Recuento de Células , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Lectinas , Antígenos Comunes de Leucocito , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pericitos/metabolismo , Piperidinas/metabolismo , Proteoglicanos/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Traumatismos de la Médula Espinal/patología , Factores de Tiempo , Uracilo/análogos & derivados , Uracilo/metabolismo
5.
iScience ; 26(8): 107265, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37502260

RESUMEN

The differentiation of human pluripotent stem cells into the SOX17+ definitive endoderm (DE) germ layer is important for generating tissues for regenerative medicine. Multiple developmental and stem cell studies have demonstrated that Activin/Nodal signaling is the primary driver of definitive endoderm formation. Here, we uncover that the FGF2-FGFR-ERK1/2 signaling contributes to mesendoderm and SOX17+ DE formation. Without ERK1/2 signaling, the Activin/Nodal signaling is insufficient to drive mesendoderm and DE formation. Besides FGF2-FGFR-mediated signaling, IGF1R signaling possibly contributes to the ERK1/2 signaling for DE formation. We identified a temporal relationship between Activin/Nodal-SMAD2 and FGF2-FGFR-ERK1/2 signaling in which Activin/Nodal-SMAD2 participates in the initiation of mesendoderm and DE specification that is followed by increasing activity of FGF2-FGFR-ERK1/2 to facilitate and permit the successful generation of SOX17+ DE. Overall, besides the role of Activin/Nodal signaling for DE formation, our findings shed light on the contribution of ERK1/2 signaling for mesendoderm and DE formation.

6.
J Pediatr Adolesc Gynecol ; 34(6): 882-884, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34311094

RESUMEN

BACKGROUND: Fetus-in-fetu (FIF) is a rare, congenital soft tissue mass typically occurring retroperitoneally in neonates younger than 18 months. We present a 13-year-old girl with an ovarian FIF occurrence and subsequent residual regrowth after resection. CASE: A 13-year-old girl presented with abdominal pain and was found to have a 19-cm, complex, right adnexal mass. Preoperative tumor markers were normal and risk assessment favored a benign process. She underwent open ovarian cystectomy with pathology showing FIF. Nine months later, she had a recurrence of her ovarian mass and underwent right oophorectomy, with FIF on pathology. SUMMARY AND CONCLUSION: In patients in whom FIF is discovered within the ovary, consider postoperative surveillance, because of the risk of recurrence or residual disease.


Asunto(s)
Enfermedades de los Anexos , Teratoma , Adolescente , Diagnóstico Diferencial , Femenino , Feto , Humanos , Recién Nacido , Ovario/cirugía , Teratoma/diagnóstico
7.
Nat Commun ; 12(1): 3133, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035238

RESUMEN

Heterozygous HNF1A gene mutations can cause maturity onset diabetes of the young 3 (MODY3), characterized by insulin secretion defects. However, specific mechanisms of MODY3 in humans remain unclear due to lack of access to diseased human pancreatic cells. Here, we utilize MODY3 patient-derived human induced pluripotent stem cells (hiPSCs) to study the effect(s) of a causal HNF1A+/H126D mutation on pancreatic function. Molecular dynamics simulations predict that the H126D mutation could compromise DNA binding and gene target transcription. Genome-wide RNA-Seq and ChIP-Seq analyses on MODY3 hiPSC-derived endocrine progenitors reveal numerous HNF1A gene targets affected by the mutation. We find decreased glucose transporter GLUT2 expression, which is associated with reduced glucose uptake and ATP production in the MODY3 hiPSC-derived ß-like cells. Overall, our findings reveal the importance of HNF1A in regulating GLUT2 and several genes involved in insulin secretion that can account for the insulin secretory defect clinically observed in MODY3 patients.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Transportador de Glucosa de Tipo 2/genética , Glucosa/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Mutación , Células Cultivadas , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Transportador de Glucosa de Tipo 2/metabolismo , Factor Nuclear 1-alfa del Hepatocito/química , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Secretoras de Insulina/citología , Masculino , Simulación de Dinámica Molecular , Linaje , Dominios Proteicos
8.
Hum Mutat ; 31(3): 335-46, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20052762

RESUMEN

An important challenge in translational bioinformatics is to understand how genetic variation gives rise to molecular changes at the protein level that can precipitate both monogenic and complex disease. To this end, we compiled datasets of human disease-associated amino acid substitutions (AAS) in the contexts of inherited monogenic disease, complex disease, functional polymorphisms with no known disease association, and somatic mutations in cancer, and compared them with respect to predicted functional sites in proteins. Using the sequence homology-based tool SIFT to estimate the proportion of deleterious AAS in each dataset, only complex disease AAS were found to be indistinguishable from neutral polymorphic AAS. Investigation of monogenic disease AAS predicted to be nondeleterious by SIFT were characterized by a significant enrichment for inherited AAS within solvent accessible residues, regions of intrinsic protein disorder, and an association with the loss or gain of various posttranslational modifications. Sites of structural and/or functional interest were therefore surmised to constitute useful additional features with which to identify the molecular disruptions caused by deleterious AAS. A range of bioinformatic tools, designed to predict structural and functional sites in protein sequences, were then employed to demonstrate that intrinsic biases exist in terms of the distribution of different types of human AAS with respect to specific structural, functional and pathological features. Our Web tool, designed to potentiate the functional profiling of novel AAS, has been made available at http://profile.mutdb.org/.


Asunto(s)
Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Polimorfismo Genético , Alelos , Aminoácidos/química , Aminoácidos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Variación Genética , Glicosilación , Humanos , Internet , Mutación Missense , Fosforilación , Análisis de Secuencia de Proteína
9.
Bioinformatics ; 25(21): 2744-50, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19734154

RESUMEN

MOTIVATION: Advances in high-throughput genotyping and next generation sequencing have generated a vast amount of human genetic variation data. Single nucleotide substitutions within protein coding regions are of particular importance owing to their potential to give rise to amino acid substitutions that affect protein structure and function which may ultimately lead to a disease state. Over the last decade, a number of computational methods have been developed to predict whether such amino acid substitutions result in an altered phenotype. Although these methods are useful in practice, and accurate for their intended purpose, they are not well suited for providing probabilistic estimates of the underlying disease mechanism. RESULTS: We have developed a new computational model, MutPred, that is based upon protein sequence, and which models changes of structural features and functional sites between wild-type and mutant sequences. These changes, expressed as probabilities of gain or loss of structure and function, can provide insight into the specific molecular mechanism responsible for the disease state. MutPred also builds on the established SIFT method but offers improved classification accuracy with respect to human disease mutations. Given conservative thresholds on the predicted disruption of molecular function, we propose that MutPred can generate accurate and reliable hypotheses on the molecular basis of disease for approximately 11% of known inherited disease-causing mutations. We also note that the proportion of changes of functionally relevant residues in the sets of cancer-associated somatic mutations is higher than for the inherited lesions in the Human Gene Mutation Database which are instead predicted to be characterized by disruptions of protein structure. AVAILABILITY: http://mutdb.org/mutpred CONTACT: predrag@indiana.edu; smooney@buckinstitute.org.


Asunto(s)
Sustitución de Aminoácidos/genética , Biología Computacional/métodos , Proteínas/química , Secuencia de Aminoácidos , Inteligencia Artificial , Bases de Datos de Proteínas , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia de Proteína
10.
Cell Death Dis ; 11(5): 378, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424151

RESUMEN

The differentiation of human pluripotent stem cells into pancreatic cells involves cellular proliferation and apoptosis during cell fate transitions. However, their implications for establishing cellular identity are unclear. Here, we profiled the expression of BCL-2 family of proteins during pancreatic specification and observed an upregulation of BCL-xL, downregulation of BAK and corresponding downregulation of cleaved CASP3 representative of apoptosis. Experimental inhibition of BCL-xL reciprocally increased apoptosis and resulted in a decreased gene expression of pancreatic markers despite a compensatory increase in anti-apoptotic protein BCL-2. RNA-Seq analyses then revealed a downregulation of multiple metabolic genes upon inhibition of BCL-xL. Follow-up bioenergetics assays revealed broad downregulation of both glycolysis and oxidative phosphorylation when BCL-xL was inhibited. Early perturbation of BCL-xL during pancreatic specification also had subsequent detrimental effects on the formation of INS+ pancreatic beta-like cells. In conclusion, the more differentiated pancreatic progenitors are dependent on anti-apoptotic BCL-xL for survival, whereas the less differentiated pancreatic progenitors that survived after WEHI-539 treatment would exhibit a more immature phenotype. Therefore, modulation of the expression level of BCL-xL can potentially increase the survival and robustness of pancreatic progenitors that ultimately define human pancreatic beta cell mass and function.


Asunto(s)
Apoptosis/fisiología , Células Madre Pluripotentes/citología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo , Caspasa 3/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Humanos , Neoplasias Pancreáticas/metabolismo , Células Madre Pluripotentes/metabolismo
11.
iScience ; 16: 192-205, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31195238

RESUMEN

Maturity-onset diabetes of the young 1 (MODY1) is a monogenic diabetes condition caused by heterozygous HNF4A mutations. We investigate how HNF4A haploinsufficiency from a MODY1/HNF4A mutation influences the development of foregut-derived liver and pancreatic cells through differentiation of human induced pluripotent stem cells from a MODY1 family down the foregut lineage. In MODY1-derived hepatopancreatic progenitors, which expressed reduced HNF4A levels and mislocalized HNF4A, foregut genes were downregulated, whereas hindgut-specifying HOX genes were upregulated. MODY1-derived hepatocyte-like cells were found to exhibit altered morphology. Hepatic and ß cell gene signatures were also perturbed in MODY1-derived hepatocyte-like and ß-like cells, respectively. As mutant HNF4A (p.Ile271fs) did not undergo complete nonsense-mediated decay or exert dominant negativity, HNF4A-mediated loss of function is likely due to impaired transcriptional activation of target genes. Our results suggest that in MODY1, liver and pancreas development is perturbed early on, contributing to altered hepatic proteins and ß cell defects in patients.

12.
Cancer Res ; 74(21): 6071-81, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25189529

RESUMEN

Asian nonsmoking populations have a higher incidence of lung cancer compared with their European counterparts. There is a long-standing hypothesis that the increase of lung cancer in Asian never-smokers is due to environmental factors such as second-hand smoke. We analyzed whole-genome sequencing of 30 Asian lung cancers. Unsupervised clustering of mutational signatures separated the patients into two categories of either all the never-smokers or all the smokers or ex-smokers. In addition, nearly one third of the ex-smokers and smokers classified with the never-smoker-like cluster. The somatic variant profiles of Asian lung cancers were similar to that of European origin with G.C>T.A being predominant in smokers. We found EGFR and TP53 to be the most frequently mutated genes with mutations in 50% and 27% of individuals, respectively. Among the 16 never-smokers, 69% had an EGFR mutation compared with 29% of 14 smokers/ex-smokers. Asian never-smokers had lung cancer signatures distinct from the smoker signature and their mutation profiles were similar to European never-smokers. The profiles of Asian and European smokers are also similar. Taken together, these results suggested that the same mutational mechanisms underlie the etiology for both ethnic groups. Thus, the high incidence of lung cancer in Asian never-smokers seems unlikely to be due to second-hand smoke or other carcinogens that cause oxidative DNA damage, implying that routine EGFR testing is warranted in the Asian population regardless of smoking status.


Asunto(s)
Daño del ADN/genética , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética , Contaminación por Humo de Tabaco/efectos adversos , Pueblo Asiatico/genética , Receptores ErbB/genética , Femenino , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación , Factores de Riesgo , Proteína p53 Supresora de Tumor/genética
13.
Genome Med ; 4(11): 88, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23181697

RESUMEN

Genomic variants with a key role in causing cancer or affecting the response to cancer therapeutics need to be identified so that they can be targeted for therapy. The transFIC tool aims to identify somatic point mutations that drive cancer in sequencing projects. This package is available as a web service, a stand-alone program and a website. It improves the functional prediction scores generated by popular established prediction tools and will be useful to cancer researchers. SEE RESEARCH ARTICLE: http://genomemedicine.com/content/4/11/89.

14.
Methods Mol Biol ; 628: 307-19, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20238089

RESUMEN

As databases of genome data continue to grow, our understanding of the functional elements of the genome grows as well. Many genetic changes in the genome have now been discovered and characterized, including both disease-causing mutations and neutral polymorphisms. In addition to experimental approaches to characterize specific variants, over the past decade, there has been intense bioinformatic research to understand the molecular effects of these genetic changes. In addition to genomic experimental assays, the bioinformatic efforts have focused on two general areas. First, researchers have annotated genetic variation data with molecular features that are likely to affect function. Second, statistical methods have been developed to predict mutations that are likely to have a molecular effect. In this protocol manuscript, methods for understanding the molecular functions of single nucleotide polymorphisms (SNPs) and mutations are reviewed and described. The intent of this chapter is to provide an introduction to the online tools that are both easy to use and useful.


Asunto(s)
Polimorfismo de Nucleótido Simple , Sustitución de Aminoácidos , Biología Computacional , Predisposición Genética a la Enfermedad , Humanos , Mutación , Empalme del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA