Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 449-461, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37259835

RESUMEN

The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.


Asunto(s)
Proteínas , Programas Informáticos , Proteínas/química , Cristalografía por Rayos X , Sustancias Macromoleculares
2.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 4): 235-42, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21460441

RESUMEN

The CCP4 (Collaborative Computational Project, Number 4) software suite is a collection of programs and associated data and software libraries which can be used for macromolecular structure determination by X-ray crystallography. The suite is designed to be flexible, allowing users a number of methods of achieving their aims. The programs are from a wide variety of sources but are connected by a common infrastructure provided by standard file formats, data objects and graphical interfaces. Structure solution by macromolecular crystallography is becoming increasingly automated and the CCP4 suite includes several automation pipelines. After giving a brief description of the evolution of CCP4 over the last 30 years, an overview of the current suite is given. While detailed descriptions are given in the accompanying articles, here it is shown how the individual programs contribute to a complete software package.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas/análisis , Diseño de Software , Automatización de Laboratorios , Conducta Cooperativa , Cristalografía por Rayos X/instrumentación
3.
J Mol Biol ; 334(4): 697-719, 2003 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-14636597

RESUMEN

The Escherichia coli metabolome has been characterised using the two-dimensional structures of 745 metabolites, obtained from the EcoCyc and KEGG databases. Physicochemical properties of the metabolome have been calculated to provide an overview of this set of cognate ligands. A library of fragments commonly found among these molecules has been employed to reveal the main constituents of metabolites, and to assist a broad classification of the metabolome into biochemically relevant classes. Fragment-based fingerprints reveal the metabolome as a continuum in the two-dimensional structural space, where clusters of molecules sharing similar scaffolds can be identified, but are generally overlapping. Nucleotide, carbohydrate and amino acid-like molecules are the most prominent, but at high levels of similarity, a more detailed classification is possible. Classification schemes for the metabolome are a promising tool for understanding the chemical diversity of the metabolome. When used in conjunction with existing classifications of the proteome, they can help to elucidate the binding preferences and promiscuity of proteins and their cognate substrates.


Asunto(s)
Escherichia coli/metabolismo , Ligandos , Proteoma , Biología Computacional , Bases de Datos Factuales , Escherichia coli/genética , Estructura Molecular , Programas Informáticos
4.
Structure ; 19(10): 1395-412, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22000512

RESUMEN

This report presents the conclusions of the X-ray Validation Task Force of the worldwide Protein Data Bank (PDB). The PDB has expanded massively since current criteria for validation of deposited structures were adopted, allowing a much more sophisticated understanding of all the components of macromolecular crystals. The size of the PDB creates new opportunities to validate structures by comparison with the existing database, and the now-mandatory deposition of structure factors creates new opportunities to validate the underlying diffraction data. These developments highlighted the need for a new assessment of validation criteria. The Task Force recommends that a small set of validation data be presented in an easily understood format, relative to both the full PDB and the applicable resolution class, with greater detail available to interested users. Most importantly, we recommend that referees and editors judging the quality of structural experiments have access to a concise summary of well-established quality indicators.


Asunto(s)
Cristalografía por Rayos X/normas , Bases de Datos de Proteínas/normas , Proteínas/química , Comités Consultivos , Enlace de Hidrógeno , Conformación Proteica , Control de Calidad , Análisis de Secuencia de Proteína , Programas Informáticos , Difracción de Rayos X/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA