Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 158(4): 849-860, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25126789

RESUMEN

Distal enhancers commonly contact target promoters via chromatin looping. In erythroid cells, the locus control region (LCR) contacts ß-type globin genes in a developmental stage-specific manner to stimulate transcription. Previously, we induced LCR-promoter looping by tethering the self-association domain (SA) of Ldb1 to the ß-globin promoter via artificial zinc fingers. Here, we show that targeting the SA to a developmentally silenced embryonic globin gene in adult murine erythroblasts triggers its transcriptional reactivation. This activity depends on the LCR, consistent with an LCR-promoter looping mechanism. Strikingly, targeting the SA to the fetal γ-globin promoter in primary adult human erythroblasts increases γ-globin promoter-LCR contacts, stimulating transcription to approximately 85% of total ß-globin synthesis, with a reciprocal reduction in adult ß-globin expression. Our findings demonstrate that forced chromatin looping can override a stringent developmental gene expression program and suggest a novel approach to control the balance of globin gene transcription for therapeutic applications.


Asunto(s)
Cromatina/metabolismo , Hemoglobina Fetal/genética , Técnicas Genéticas , Región de Control de Posición , Activación Transcripcional , Globinas beta/genética , Animales , Antígenos CD34/metabolismo , Cromatina/química , Embrión de Mamíferos/metabolismo , Eritroblastos/metabolismo , Hemoglobinopatías/genética , Hemoglobinopatías/terapia , Humanos , Ratones , Cultivo Primario de Células
2.
Nucleic Acids Res ; 48(18): 10226-10240, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32960220

RESUMEN

The underlying mechanism of transcriptional co-repressor ETO2 during early erythropoiesis and hemoglobin switching is unclear. We find that absence of ETO2 in mice interferes with down-regulation of PU.1 and GATA2 in the fetal liver, impeding a key step required for commitment to erythroid maturation. In human ß-globin transgenic Eto2 null mice and in human CD34+ erythroid progenitor cells with reduced ETO2, loss of ETO2 results in ineffective silencing of embryonic/fetal globin gene expression, impeding hemoglobin switching during erythroid differentiation. ETO2 occupancy genome-wide occurs virtually exclusively at LDB1-complex binding sites in enhancers and ETO2 loss leads to increased enhancer activity and expression of target genes. ETO2 recruits the NuRD nucleosome remodeling and deacetylation complex to regulate histone acetylation and nucleosome occupancy in the ß-globin locus control region and γ-globin gene. Loss of ETO2 elevates LDB1, MED1 and Pol II in the locus and facilitates fetal γ-globin/LCR looping and γ-globin transcription. Absence of the ETO2 hydrophobic heptad repeat region impairs ETO2-NuRD interaction and function in antagonizing γ-globin/LCR looping. Our results reveal a pivotal role for ETO2 in erythropoiesis and globin gene switching through its repressive role in the LDB1 complex, affecting the transcription factor and epigenetic environment and ultimately restructuring chromatin organization.


Asunto(s)
Cromatina/metabolismo , Eritropoyesis , Proteínas Represoras/metabolismo , Animales , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Células Eritroides , Humanos , Células K562 , Proteínas con Dominio LIM/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Ratones Noqueados , Factores de Transcripción/metabolismo , gamma-Globinas/metabolismo
3.
Genes Dev ; 28(12): 1278-90, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24874989

RESUMEN

Many questions remain about how close association of genes and distant enhancers occurs and how this is linked to transcription activation. In erythroid cells, lim domain binding 1 (LDB1) protein is recruited to the ß-globin locus via LMO2 and is required for looping of the ß-globin locus control region (LCR) to the active ß-globin promoter. We show that the LDB1 dimerization domain (DD) is necessary and, when fused to LMO2, sufficient to completely restore LCR-promoter looping and transcription in LDB1-depleted cells. The looping function of the DD is unique and irreplaceable by heterologous DDs. Dissection of the DD revealed distinct functional properties of conserved subdomains. Notably, a conserved helical region (DD4/5) is dispensable for LDB1 dimerization and chromatin looping but essential for transcriptional activation. DD4/5 is required for the recruitment of the coregulators FOG1 and the nucleosome remodeling and deacetylating (NuRD) complex. Lack of DD4/5 alters histone acetylation and RNA polymerase II recruitment and results in failure of the locus to migrate to the nuclear interior, as normally occurs during erythroid maturation. These results uncouple enhancer-promoter looping from nuclear migration and transcription activation and reveal new roles for LDB1 in these processes.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas con Dominio LIM/metabolismo , Activación Transcripcional/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/genética , Proteínas de Unión al ADN/genética , Dimerización , Células Eritroides/metabolismo , Eliminación de Gen , Proteínas con Dominio LIM/genética , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Globinas beta/genética , Globinas beta/metabolismo
4.
Blood ; 132(18): 1963-1973, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30150205

RESUMEN

Long noncoding RNAs (lncRNAs) are increasingly being appreciated as participants in regulation of important cellular processes, including transcription. Because lncRNAs are highly cell type specific, they have the potential to contribute to the unique transcriptional repertoire of diverse cells, but underlying mechanisms are unclear. We studied BGLT3, an erythroid lncRNA encoded downstream of Aγ-globin (HBG1). BGLT3 and γ-globin genes are dynamically cotranscribed in erythroid cells in vivo. Deletion of BGLT3 using CRISPR/Cas9 editing shows that it specifically contributes to regulation of γ-globin genes. We used reduction or overexpression of the RNA and inhibition of transcription through the locus by CRISPRi to distinguish functions of the transcript vs the underlying sequence. Transcription of the BGLT3 locus is critical for looping between the γ-globin genes and BGLT3 sequences. In contrast, the BGLT3 transcript is dispensable for γ-globin/BGLT3 looping but interacts with the mediator complex on chromatin. Manipulation of the BGLT3 locus does not compromise γ-globin gene long-range looping interactions with the ß-globin locus control region (LCR). These data reveal that BGLT3 regulates γ-globin transcription in a developmental stage-specific fashion together with the LCR by serving as a separate means to increase RNA Pol II density at the γ-globin promoters.


Asunto(s)
Región de Control de Posición , ARN Largo no Codificante/genética , gamma-Globinas/genética , Animales , Sistemas CRISPR-Cas , Línea Celular , Células Eritroides/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones Transgénicos
5.
Nucleic Acids Res ; 45(14): 8255-8268, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28520978

RESUMEN

Mechanistic studies in erythroid cells indicate that LDB1, as part of a GATA1/TAL1/LMO2 complex, brings erythroid-expressed genes into proximity with enhancers for transcription activation. The role of co-activators in establishing this long-range interaction is poorly understood. Here we tested the contributions of the RNA Pol II pre-initiation complex (PIC), mediator and cohesin to establishment of locus control region (LCR)/ß-globin proximity. CRISPR/Cas9 editing of the ß-globin promoter to eliminate the RNA Pol II PIC by deleting the TATA-box resulted in loss of transcription, but enhancer-promoter interaction was unaffected. Additional deletion of the promoter GATA1 site eliminated LDB1 complex and mediator occupancy and resulted in loss of LCR/ß-globin proximity. To separate the roles of LDB1 and mediator in LCR looping, we expressed a looping-competent but transcription-activation deficient form of LDB1 in LDB1 knock down cells: LCR/ß-globin proximity was restored without mediator core occupancy. Further, Cas9-directed tethering of mutant LDB1 to the ß-globin promoter forced LCR loop formation in the absence of mediator or cohesin occupancy. Moreover, ENCODE data and our chromatin immunoprecipitation results indicate that cohesin is almost completely absent from validated and predicted LDB1-regulated erythroid enhancer-gene pairs. Thus, lineage specific factors largely mediate enhancer-promoter looping in erythroid cells independent of mediator and cohesin.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos/genética , Regulación Leucémica de la Expresión Génica , Proteínas con Dominio LIM/genética , Animales , Secuencia de Bases , Western Blotting , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas con Dominio LIM/metabolismo , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/patología , Región de Control de Posición/genética , Ratones , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Globinas beta/genética , Cohesinas
6.
Blood ; 126(5): 665-72, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25979948

RESUMEN

Induction of fetal hemoglobin (HbF) production in adult erythrocytes can reduce the severity of sickle cell disease and ß-thalassemia. Transcription of ß-globin genes is regulated by the distant locus control region (LCR), which is brought into direct gene contact by the LDB1/GATA-1/TAL1/LMO2-containing complex. Inhibition of G9a H3K9 methyltransferase by the chemical compound UNC0638 activates fetal and represses adult ß-globin gene expression in adult human hematopoietic precursor cells, but the underlying mechanisms are unclear. Here we studied UNC0638 effects on ß-globin gene expression using ex vivo differentiation of CD34(+) erythroid progenitor cells from peripheral blood of healthy adult donors. UNC0638 inhibition of G9a caused dosed accumulation of HbF up to 30% of total hemoglobin in differentiated cells. Elevation of HbF was associated with significant activation of fetal γ-globin and repression of adult ß-globin transcription. Changes in gene expression were associated with widespread loss of H3K9me2 in the locus and gain of LDB1 complex occupancy at the γ-globin promoters as well as de novo formation of LCR/γ-globin contacts. Our findings demonstrate that G9a establishes epigenetic conditions preventing activation of γ-globin genes during differentiation of adult erythroid progenitor cells. In this view, manipulation of G9a represents a promising epigenetic approach for treatment of ß-hemoglobinopathies.


Asunto(s)
Hemoglobina Fetal/biosíntesis , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Región de Control de Posición , gamma-Globinas/genética , Adulto , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/genética , Diferenciación Celular , Proteínas de Unión al ADN/sangre , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/efectos de los fármacos , Células Precursoras Eritroides/metabolismo , Eritropoyesis , Antígenos de Histocompatibilidad , Humanos , Técnicas In Vitro , Proteínas con Dominio LIM/sangre , Modelos Biológicos , Regiones Promotoras Genéticas , Quinazolinas/farmacología , Factores de Transcripción/sangre , Talasemia beta/sangre , Talasemia beta/tratamiento farmacológico , Talasemia beta/genética
7.
Cell Rep ; 43(7): 114378, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38889007

RESUMEN

The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81-kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR-Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expressions were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the KMT2A/MLL1 complex. Myrlin CRISPRi compromised KMT2A occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting KMT2A.

8.
bioRxiv ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37808852

RESUMEN

The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81 kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR/Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expression were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the MLL1 complex. Myrlin CRISPRi compromised MLL1 occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting MLL1.

9.
Chromosoma ; 119(4): 425-34, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20354861

RESUMEN

Chromatin insulators block the action of transcriptional enhancers when interposed between an enhancer and a promoter. An Flp technology was used to examine interactions between Drosophila gypsy and Wari insulators in somatic and germ cells. The gypsy insulator consists of 12 binding sites for the Su(Hw) protein, while the endogenous Wari insulator, located on the 3' side of the white gene, is independent from the Su(Hw) protein. Insertion of the gypsy but not Wari insulator between FRT sites strongly blocks recombination between Flp dimers bound to FRT sites located on the same chromatid (recombination in cis) or in sister chromatids (unequal recombination in trans). At the same time, the interaction between Wari and gypsy insulators regulates the efficiency of Flp-mediated recombination. Thus, insulators may have a role in controlling interactions between distantly located protein complexes (not only those involved in transcriptional gene regulation) on the same chromosome or on sister chromatids in somatic and germ cells. We have also found that the frequency of Flp-mediated recombination between FRT sites is strongly dependent on the relative orientation of gypsy insulators. Taken together, our results indicate that the interactions between insulators can be visualized by Flp technology and that insulators may be involved in blocking undesirable interactions between proteins at the two-chromatid phase of the cell cycle.


Asunto(s)
Efectos de la Posición Cromosómica , ADN Nucleotidiltransferasas/metabolismo , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Elementos Aisladores , Recombinación Genética , Animales , Sitios de Unión , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos de Facilitación Genéticos , Modelos Genéticos , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Elementos Silenciadores Transcripcionales
10.
Methods Mol Biol ; 1698: 229-236, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29076093

RESUMEN

Chromatin immunoprecipitation (ChIP) allows determination of the locations to which a select protein is bound in chromatin. Chemical crosslinking of DNA and protein with bi-functional reagents such as formaldehyde and precipitation of the protein with a specific antibody permit PCR amplification (ChIP) or sequencing (ChIP-seq) to identify the bound sites. Here, we present methodology for these approaches that are widely applicable to erythroid cell lines, progenitor cells, and tissues.


Asunto(s)
Inmunoprecipitación de Cromatina , Células Eritroides/metabolismo , Animales , Sitios de Unión , Línea Celular , Cromatina , Inmunoprecipitación de Cromatina/métodos , Proteínas de Unión al ADN , Feto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hígado/citología , Ratones , Unión Proteica
11.
Methods Mol Biol ; 1698: 237-243, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29076094

RESUMEN

Chromosome conformation capture (3C) allows for the determination of the proximity in nuclei of DNA sequences that are linearly distant from one another in the genome. Proximity that is above that expected from random interaction provides evidence for potential long-range functional interactions such as between enhancers and their target genes. Many controls are required to convincingly demonstrate increased frequency of interaction between sequences and stringent functional tests must also be applied. Here, we present methodology suitable for 3C experiments that can also be applied as the basis for related 4C, 5C, and Hi-C approaches. These procedures are widely applicable to erythroid cell lines, progenitor cells, and tissues.


Asunto(s)
Cromatina , Cromosomas , ADN , Células Eritroides/metabolismo , Genómica , Conformación de Ácido Nucleico , Animales , Núcleo Celular , Epistasis Genética , Células Precursoras Eritroides/metabolismo , Regulación de la Expresión Génica , Sitios Genéticos , Genómica/métodos , Humanos , Ratones , Globinas beta/genética
12.
Nat Cell Biol ; 19(8): 883-885, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28752854

RESUMEN

CCCTC-binding factor (CTCF) sites are enriched at the boundaries of topologically associated domains (TADs), but their function within TADs is unclear. Removal of sub-TAD CTCF sites adjacent to the α-globin enhancers is now shown to result in inappropriate activation of neighbouring genes. Intra-TAD enhancer insulation might be broadly important for tissue specificity of enhancers.


Asunto(s)
Cromatina , Proteínas Represoras/genética , Factor de Unión a CCCTC , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas
13.
Cell Rep ; 19(12): 2490-2502, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636938

RESUMEN

Lineage-specific transcription factors are critical for long-range enhancer interactions, but direct or indirect contributions of architectural proteins such as CCCTC-binding factor (CTCF) to enhancer function remain less clear. The LDB1 complex mediates enhancer-gene interactions at the ß-globin locus through LDB1 self-interaction. We find that an LDB1-bound enhancer upstream of carbonic anhydrase 2 (Car2) activates its expression by interacting directly with CTCF at the gene promoter. Both LDB1 and CTCF are required for enhancer-Car2 looping, and the domain of LDB1 contacted by CTCF is necessary to rescue Car2 transcription in LDB1-deficient cells. Genome-wide studies and CRISPR/Cas9 genome editing indicate that LDB1-CTCF enhancer looping underlies activation of a substantial fraction of erythroid genes. Our results provide a mechanism by which long-range interactions of architectural protein CTCF can be tailored to achieve a tissue-restricted pattern of chromatin loops and gene expression.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Proteínas de Unión al ADN/fisiología , Elementos de Facilitación Genéticos , Células Eritroides/metabolismo , Proteínas con Dominio LIM/fisiología , Animales , Linaje de la Célula , Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
14.
Ann N Y Acad Sci ; 1368(1): 31-9, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26918894

RESUMEN

The ß-hemoglobinopathies are the most common monogenic disorders in humans, with symptoms arising after birth when the fetal γ-globin genes are silenced and the adult ß-globin gene is activated. There is a growing appreciation that genome organization and the folding of chromosomes are key determinants of gene transcription. Underlying this function is the activity of transcriptional enhancers that increase the transcription of target genes over long linear distances. To accomplish this, enhancers engage in close physical contact with target promoters through chromosome folding or looping that is orchestrated by protein complexes that bind to both sites and stabilize their interaction. We find that enhancer activity can be redirected with concomitant changes in gene transcription. Both targeting the ß-globin locus control region (LCR) to the γ-globin gene in adult erythroid cells by tethering and epigenetic unmasking of a silenced γ-globin gene lead to increased frequency of LCR/γ-globin contacts and reduced LCR/ß-globin contacts. The outcome of these manipulations is robust, pancellular γ-globin transcription activation with a concomitant reduction in ß-globin transcription. These examples show that chromosome looping may be considered a therapeutic target for gene activation in ß-thalassemia and sickle cell disease.


Asunto(s)
Cromatina/genética , Proteínas de Unión al ADN/genética , Células Eritroides , Hemoglobinopatías/genética , Proteínas con Dominio LIM/genética , Factores de Transcripción/genética , Animales , Cromatina/metabolismo , Proteínas de Unión al ADN/biosíntesis , Células Eritroides/metabolismo , Terapia Genética/métodos , Terapia Genética/tendencias , Hemoglobinopatías/metabolismo , Hemoglobinopatías/terapia , N-Metiltransferasa de Histona-Lisina/biosíntesis , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Proteínas con Dominio LIM/biosíntesis , Quinazolinas/uso terapéutico , Factores de Transcripción/biosíntesis , Globinas beta/biosíntesis , Globinas beta/genética , gamma-Globinas/biosíntesis , gamma-Globinas/genética
15.
Cell Stem Cell ; 16(3): 213-4, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25748925

RESUMEN

Pairing of homologous alleles is a phenomenon generally associated with imprinted and mono-allelically expressed loci. In this issue, Hogan et al. (2015) examine the earliest steps between pluripotency and lineage commitment in ESCs and find a critical role for transient pairing of Oct4 alleles in exiting the pluripotent state.


Asunto(s)
Alelos , Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Elementos de Respuesta/fisiología , Animales
16.
Immunol Lett ; 85(3): 237-41, 2003 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-12663137

RESUMEN

POU homeodomain proteins are important regulators of ubiquitous as well as tissue-specific transcription. Ubiquitously expressed Oct-1 and tissue-specific Oct-2 proteins are members of the POU family and contain very similar DNA-binding POU domains. While Oct-1 is ubiquitous, Oct-2 is predominantly expressed in B cells, in activated T cells and in nervous system. Oct-1 is involved in regulation of some houskeeping genes-histone H2B, snRNAs as well as in tissue-specific regulation of immunoglobuline gene transcription and of some other genes. Here we report that novel alternatively spliced product of the human Oct-1 gene encode Oct-1L isoform with tissue-specific expression pattern, similar to Oct-2. Oct-1L differ from ubiquitously expressed Oct-1A in 5'-terminal exon (exon 1L). Analysis of nucleotide sequences from Human Genome Data Bank has located exon 1L about 108 kbp downstream ubiquitously expressed exon 1U. Amino terminus of Oct-1L show extensive similarity to amino terminus of Oct-2. We suppose, that Oct-1L may has a specific role in gene expression in lymphoid tissues and brain.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Proteínas de Unión al ADN/biosíntesis , Perfilación de la Expresión Génica , Factor C1 de la Célula Huésped , Humanos , Células Jurkat , Factor 1 de Transcripción de Unión a Octámeros , Factor 2 de Transcripción de Unión a Octámeros , Especificidad de Órganos , Isoformas de Proteínas/genética , Análisis de Secuencia de ADN , Factores de Transcripción/biosíntesis
17.
Immunol Lett ; 88(1): 15-20, 2003 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-12853155

RESUMEN

The ubiquitous transcription factor Oct-1 is a member of the POU domain family of regulatory proteins. Target genes controlled by Oct-1 include housekeeping genes, e.g. the genes encoding histon H2B or snRNAs, as well as tissue-specific genes, e.g. the genes encoding the light and heavy chains of immunoglobulines, some interleukins, and others. Oct-1 pre-mRNA may be spliced in several ways, resulting in production of several protein isoforms that may differ functionally. The 5'-end of the Oct-1 gene contains two exons-exon 1U and exon 1L that alternatively present in Oct-1 mRNA. We studied regulation of transcription of the Oct-1 gene using reporter gene assays of promoter-luciferase gene-constructs. It was shown that transcription of the Oct-1 gene is regulated by two promoters located upstream of the exon 1U and upstream of the exon 1L. The promoter located upstream of the exon 1U contains G/C-rich sequences and multiple Sp1 sites, while the promoter located upstream of the exon 1L contains A/T-rich motifs and autoregulation-related cis-elements: two octamer sites ATGCAAAT, two octamer related sites and multiple TAAT-core sites. Exons 1U and 1L in the human OTF-1 locus encoding the Oct-1 gene are located at the distance of 108 kbp. In the murine locus otf-1 the distance between exons 1U and 1L is 67 kbp. We suggest that the two promoters can differ functionally.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Transcripción Genética , Región de Flanqueo 5' , Animales , Composición de Base , Línea Celular , Clonación Molecular , Exones , Factor C1 de la Célula Huésped , Humanos , Linfocitos/fisiología , Ratones , Factor 1 de Transcripción de Unión a Octámeros
19.
Curr Opin Genet Dev ; 22(2): 79-85, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22169023

RESUMEN

In metazoans, enhancers of gene transcription must often exert their effects over tens of kilobases of DNA. Over the past decade it has become clear that to do this, enhancers come into close proximity with target promoters with the looping away of intervening sequences. In a few cases proteins that are involved in the establishment or maintenance of these loops have been revealed but how the proper gene target is selected remains mysterious. Chromatin insulators had been appreciated as elements that play a role in enhancer fidelity through their enhancer blocking or barrier activity. However, recent work suggests more direct participation of insulators in enhancer-gene interactions. The emerging view begins to incorporate transcription activation by distant enhancers with large scale nuclear architecture and subnuclear movement.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Animales , Humanos , Modelos Genéticos , ARN no Traducido/genética , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA