RESUMEN
This feature article discusses the enabling role of analytical chemistry in important fields of research and development such as life science, material sciences and environmental sciences. It comments on the often limited visibility of analytical sciences in the public perception and suggests ways to overcome this shortcoming and to create bigger impact.
RESUMEN
BACKGROUND: Mycotoxin surveys play an essential role in our food safety system. The obtained occurrence data form the basis for the assessment of the exposure of humans and animals to these toxic fungal secondary metabolites. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has become the gold standard for mycotoxin determination because it enables selective and sensitive multi-toxin analysis. Simultaneous determination of several hundreds of secondary fungal metabolites is feasible using this technique. In this study, we combined a targeted dilute-and-shoot LC-MS/MS-based multi-analyte approach with multivariate statistics for the analysis of Austrian wheat from two different years and different geographical origins. RESULTS: We quantified 47 secondary fungal metabolites, including regulated emerging and masked mycotoxins. The resulting multi-mycotoxin occurrence data were further analyzed using both multivariate and univariate statistics. Principal component analysis (PCA) and analysis of variance (ANOVA) simultaneous component analysis (ASCA) were employed to identify regional and yearly trends within the dataset and to quantify the variance in metabolite occurrence attributed to the different effects. In addition, secondary fungal metabolites significantly impacted by these factors were selected via ANOVA. Of the 47 secondary metabolites identified, 39 were affected by the year, region or a combined effect. Moreover, our findings show that 43 of the secondary fungal metabolites were significantly influenced by the weather conditions. CONCLUSION: The results presented in this study underline the added value of combining targeted LC-MS/MS with multivariate statistics for monitoring a broad spectrum of secondary fungal metabolites in food crops. Through multivariate statistics, trends associated with the year or region can be readily studied. The approach presented could pave the way for a better understanding of the impact of climate change on plant pathogenic fungi and its implications for food safety. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Contaminación de Alimentos , Hongos , Micotoxinas , Espectrometría de Masas en Tándem , Triticum , Tiempo (Meteorología) , Triticum/química , Triticum/microbiología , Triticum/metabolismo , Micotoxinas/análisis , Micotoxinas/metabolismo , Espectrometría de Masas en Tándem/métodos , Austria , Contaminación de Alimentos/análisis , Hongos/metabolismo , Análisis Multivariante , Cromatografía Liquida/métodosRESUMEN
Complementary foods (CFs) commonly consumed by infants and young children (IYC) in sub-Saharan Africa (SSA) are processed using either single or multi-grain ingredients through simple technologies such as fermentation, malting and roasting. Interestingly, CFs (e.g., ogi, kunu, and dabo) are prepared and fed to infants alongside breastmilk until they are completely weaned up to the infant's second birthday. The grains used for preparing CFs can be contaminated with bacterial and chemical contaminants as a result of poor harvesting, handling or storage practices. The stage at which IYC are introduced to CFs is of utmost importance as it aids in addressing malnutrition and improving their overall health and well-being. Complementary feeding practices across SSA are influenced by socio-economic, cultural and geographical factors such that improper introduction can result in dire health consequences including immune suppression, severe foodborne diseases, poor child growth and development, and sometimes death from malnutrition. Malnutrition often occurs from inadequacies of nutrient intakes and assimilation which affect the ability to maintain normal body functions such as growth, learning abilities, resistance to and recovery from diseases. In SSA, IYC malnutrition still poses an enormous concern, therefore indicating the need for intervention strategies such as the promotion of indigenous crops and elevating traditional knowledge and technologies for formulating CFs. This paper clearly highlights the diversity of CFs in SSA, ingredients utilized, processing techniques, contamination by bacteria and chemicals, and demonstrates the consequences of consuming contaminated CFs, and their influence on IYC health as well as approaches to ensuring safety and scaling up indigenous CFs.
Asunto(s)
Salud Infantil , África del Sur del Sahara , Humanos , Lactante , Preescolar , Fenómenos Fisiológicos Nutricionales del Lactante , Alimentos Infantiles , Manipulación de Alimentos/métodosRESUMEN
Infrared (IR) spectroscopy is increasingly being used to analyze food crops for quality and safety purposes in a rapid, nondestructive, and eco-friendly manner. The lack of sensitivity and the overlapping absorption characteristics of major sample matrix components, however, often prevent the direct determination of food contaminants at trace levels. By measuring fungal-induced matrix changes with near IR and mid IR spectroscopy as well as hyperspectral imaging, the indirect determination of mycotoxins in food crops has been realized. Recent studies underline that such IR spectroscopic platforms have great potential for the rapid analysis of mycotoxins along the food and feed supply chain. However, there are no published reports on the validation of IR methods according to official regulations, and those publications that demonstrate their applicability in a routine analytical set-up are scarce. Therefore, the purpose of this review is to discuss the current state-of-the-art and the potential of IR spectroscopic methods for the rapid determination of mycotoxins in food crops. The study critically reflects on the applicability and limitations of IR spectroscopy in routine analysis and provides guidance to non-spectroscopists from the food and feed sector considering implementation of IR spectroscopy for rapid mycotoxin screening. Finally, an outlook on trends, possible fields of applications, and different ways of implementation in the food and feed safety area are discussed.
Asunto(s)
Micotoxinas , Micotoxinas/análisis , Contaminación de Alimentos/análisis , Productos AgrícolasRESUMEN
Nearly 700,000 tonnes of peanuts are consumed annually in Europe. In the last 5 years, peanuts imported from China exceeded legal European Union (EU) aflatoxin limits more than 180 times. To prevent and mitigate aflatoxin contamination, the stages of the peanut chain most vulnerable to contamination must be assessed to determine how to interrupt the movement of contaminated produce. This paper discusses effective approaches for early identification and proactive mitigation of aflatoxins in peanuts to reduce a contaminant that is an impediment to trade. We consider (i) the results of the EU Commission's Directorate-General (DG) for Health and Food Safety review, (ii) the Code of Practice for the prevention and reduction of aflatoxins in peanuts issued by Food and Agriculture Organization/World Health Organization, (iii) the results from previous EU-China efforts, and (iv) the latest state-of-the-art technology in pre- and postharvest methods as essential elements of a sustainable program for integrated disease and aflatoxin management. These include preharvest use of biocontrol, biofertilizers, improved tillage, forecasting, and risk monitoring based on analysis of big data obtained by remote sensing. At the postharvest level, we consider rapid testing methods along the supply chain, Decision Support Systems for effective silo management, and effective risk monitoring during drying, storage, and transport. Available guidance and current recommendations are provided for successful practical implementation. Food safety standards also influence stakeholder and consumer trust and confidence, so we also consider the results of multiactor stakeholder group discussions.
Asunto(s)
Aflatoxinas , Arachis , Unión Europea , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Inocuidad de los AlimentosRESUMEN
Monitoring of food contaminants and residues has undergone a significant improvement in recent years and is now performed in an intensive manner. Achievements in the area of chromatography-mass spectrometry coupling techniques enabled the development of quantitative multi-target approaches covering several hundred analytes. Although the majority of methods are focusing on the analysis of one specific group of substances, such as pesticides, mycotoxins, or veterinary drugs, current trends are going towards the simultaneous determination of multiclass compounds from several families of contaminants and residues. This work provides an overview of relevant multiclass concepts based on LC-MS/MS and LC-HRMS instruments. Merits and shortcomings will be critically discussed based on current performance characteristics of the EU legislation system. In addition, the discussion of a recently developed multiclass approach covering >1000 substances is presented as a case study to illustrate the current developments in this area.
Asunto(s)
Cromatografía Liquida/métodos , Contaminación de Alimentos/análisis , Espectrometría de Masas/métodos , Límite de Detección , Micotoxinas/análisis , Plaguicidas/análisis , Drogas Veterinarias/análisisRESUMEN
In winter and summer of 2016 and 2017, airborne fungi and house dust were collected in indoors of the village Gunja, which had been flooded, and the control village Gornji Stupnik (Croatia) in order to explore variations of fungal indoor levels, particularly Aspergilli section Nidulantes series Versicolores, as well as fungal metabolites in dust. Levels of airborne Aspergilli (Versicolores) were three times as high in winter and summer in Gunja than in the control village, while dustborne isolates were equally present in both locations. Sequencing of the calmodulin gene region revealed that among Aspergilli (Versicolores), A. jensenii and A. creber were dominant and together with A. puulaauensis, A. tennesseensis and A. venenatus produced sterigmatocystin and 5-methoxysterigmatocystin (HPLC coupled with mass spectrometry); A. amoenus, A. fructus, A. griseoaurantiacus, A. pepii, and A. protuberus produced sterigmatocystin but not 5-methoxysterigmatocystin; A. sydowii did not produce any of these toxins. A total of 75 metabolites related to Penicillium (29), Aspergillus (22), Fusarium (10), Alternaria (5), Stachybotrys (2), and other fungi (7) were detected in dust by liquid chromatography-tandem mass spectrometry. The majority of metabolites including sterigmatocystin and 5-methoxysterigmatocystin exhibited a higher prevalence in winter in Gunja.
Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior , Monitoreo del Ambiente , Inundaciones/estadística & datos numéricos , Alternaria , Aspergillus , Cromatografía Liquida , Croacia , Polvo , Hongos , Vivienda , Espectrometría de Masas , Penicillium , Estaciones del Año , Stachybotrys , Esterigmatocistina/análogos & derivados , AguaRESUMEN
An informed opinion to a hugely important question, whether the food on the Europeans' plate is safe to eat, is provided. Today, the Europeans face food-borne health risks from non-communicable diseases induced by excess body weight, outbreaks caused by pathogens, antimicrobial resistance and exposures to chemical contaminants. In this review, these risks are first put in an order of importance. Then, not only potentially injurious dietary chemicals are discussed but also beneficial factors of the food. This review can be regarded as an attempt towards a dietary-exposome evaluation of the chemicals, the average European adult consumers could chronically expose to during their life-times. Risk ranking reveals that currently the European adults are chronically exposed to a mixture of potentially genotoxic-carcinogenic contaminants, particularly food process contaminants, at the potential risk levels. Furthermore, several of the contaminants whose dietary exposures pose risks appear to be carcinogens operating with a genotoxic mode of action targeting the liver. This suggests that combined health risks from the exposure to a mixture of the chemical contaminants poses a greater potential risk than the risks assessed for single compounds. Over 100 European-level risk assessments are examined. Finally, the importance of a diversified and balanced diet is emphasized.
Asunto(s)
Exposición Dietética/análisis , Exposoma , Contaminación de Alimentos , Alimentos , Adulto , Carcinógenos , Europa (Continente) , Humanos , Medición de RiesgoRESUMEN
Prior to 1985 the Food and Agriculture Organization (FAO) estimated global food crop contamination with mycotoxins to be 25%. The origin of this statement is largely unknown. To assess the rationale for it, the relevant literature was reviewed and data of around 500,000 analyses from the European Food Safety Authority and large global survey for aflatoxins, fumonisins, deoxynivalenol, T-2 and HT-2 toxins, zearalenone and ochratoxin A in cereals and nuts were examined. Using different thresholds, i.e. limit of detection, the lower and upper regulatory limits of European Union (EU) legislation and Codex Alimentarius standards, the mycotoxin occurrence was estimated. Impact of different aspects on uncertainty of the occurrence estimates presented in literature and related to our results are critically discussed. Current mycotoxin occurrence above the EU and Codex limits appears to confirm the FAO 25% estimate, while this figure greatly underestimates the occurrence above the detectable levels (up to 60-80%). The high occurrence is likely explained by a combination of the improved sensitivity of analytical methods and impact of climate change. It is of immense importance that the detectable levels are not overlooked as through diets, humans are exposed to mycotoxin mixtures which can induce combined adverse health effects.
Asunto(s)
Productos Agrícolas/química , Contaminación de Alimentos/análisis , Contaminación de Alimentos/estadística & datos numéricos , Micotoxinas/análisis , Aflatoxinas/análisis , Cambio Climático , Unión Europea , Fumonisinas/análisis , Humanos , Reproducibilidad de los Resultados , Zearalenona/análisisRESUMEN
Food processing can lead to a reduction of contaminants, such as mycotoxins. However, for food processing operations where thermal energy is employed, it is often not clear whether a reduction of mycotoxins also results in a mitigation of the toxicological impact. This is often due to the reason that the formed degradation products are not characterized and data on their toxicity is scarce. From the perspective of an analytical chemist, the elucidation of the fate of a contaminant in a complex food matrix is extremely challenging. An overview of the analytical approaches is given here, and the application and limitations are exemplified based on cases that can be found in recent literature. As most studies rely on targeted analysis, it is not clear whether the predetermined set of compounds differs from the degradation products that are actually formed during food processing. Although untargeted analysis allows for the elucidation of the complete spectrum of degradation products, only one such study is available so far. Further pitfalls include insufficient precision, natural contamination with masked forms of mycotoxins and interferences that are caused by the food matrix. One topic that is of paramount importance for both targeted and untargeted approaches is the availability of reference standards to identity and quantity the formed degradation products. Our vision is that more studies need to be published that characterize the formed degradation products, collect data on their toxicity and thereby complete the knowledge about the mycotoxin mitigating effect during food processing.
Asunto(s)
Contaminación de Alimentos/análisis , Manipulación de Alimentos/métodos , Micotoxinas/análisisRESUMEN
During recent years, mid-infrared (MIR) spectroscopy has matured into a versatile and powerful sensing tool for a wide variety of analytical sensing tasks. Attenuated total reflection (ATR) techniques have gained increased interest due to their potential to perform non-destructive sensing tasks close to real time. In ATR, the essential component is the sampling interface, i.e., the ATR waveguide and its material properties interfacing the sample with the evanescent field ensuring efficient photon-molecule interaction. Gallium arsenide (GaAs) is a versatile alternative material vs. commonly used ATR waveguide materials including but not limited to silicon, zinc selenide, and diamond. GaAs-based internal reflection elements (IREs) are a new generation of semiconductor-based waveguides and are herein used for the first time in direct spectroscopic applications combined with conventional Fourier transform infrared (FT-IR) spectroscopy. Next to the characterization of the ATR waveguide, exemplary surface reactions were monitored, and trace-level analyte detection via signal amplification taking advantage of surface-enhanced infrared absorption (SEIRA) effects was demonstrated. As an example of real-world relevance, the mycotoxin aflatoxin B1 (AFB1) was used as a model analyte in food and feed safety analysis. Graphical abstract.
Asunto(s)
Arsenicales/química , Galio/química , Semiconductores , Espectroscopía Infrarroja por Transformada de Fourier/instrumentación , Aflatoxina B1/análisis , Diseño de Equipo , Análisis de los Alimentos/instrumentación , Propiedades de SuperficieRESUMEN
This paper describes the validation of an LC-MS/MS-based method for the quantification of > 500 secondary microbial metabolites. Analytical performance parameters have been determined for seven food matrices using seven individual samples per matrix for spiking. Apparent recoveries ranged from 70 to 120% for 53-83% of all investigated analytes (depending on the matrix). This number increased to 84-94% if the recovery of extraction was considered. The comparison of the fraction of analytes for which the precision criterion of RSD ≤ 20% under repeatability conditions (for 7 replicates derived from different individual samples) and intermediate precision conditions (for 7 technical replicates from one sample), respectively, was met (85-97% vs. 93-94%) highlights the contribution of relative matrix effects to the method uncertainty. Statistical testing of apparent recoveries between pairs of matrices exhibited a significant difference for more than half of the analytes, while recoveries of the extraction showed a much better agreement. Apparent recoveries and matrix effects were found to be constant over 2-3 orders of magnitude of analyte concentrations in figs and maize, whereas the LOQs differed less than by a factor of 2 for 90% of the investigated compounds. Based on these findings, this paper discusses the applicability and practicability of current guidelines for multi-analyte method validation. Investigation of (apparent) recoveries near the LOQ seems to be insufficiently relevant to justify the enormous time-effort for manual inspection of the peaks of hundreds of analytes. Instead, more emphasis should be put on the investigation of relative matrix effects in the validation procedure. Graphical abstract.
Asunto(s)
Productos Agrícolas/química , Análisis de los Alimentos/métodos , Micotoxinas/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Límite de Detección , Espectrometría de Masa por Ionización de Electrospray/métodos , Zea mays/químicaRESUMEN
Ready-to-eat foods (RTEs) are foods consumed without any further processing. They are widely consumed as choice meals especially by school-aged children and the fast-paced working class in most low- and middle-income countries (LMICs), where they contribute substantially to the dietary intake. Depending on the type of processing and packaging material, RTEs could be industrially or traditionally processed. Typically, RTE vendors are of low literacy level, as such, they lack knowledge about good hygiene and food handling practices. In addition, RTEs are often vended in outdoor environments such that they are exposed to several contaminants of microbial origin. Depending on the quantity and type of food contaminant, consumption of contaminated RTEs may result in foodborne diseases and several other adverse health effects in humans. This could constitute major hurdles to growth and development in LMICs. Therefore, this review focuses on providing comprehensive and recent occurrence and impact data on the frequently encountered contaminants of microbial origin published in LMICs within the last decade (2009 to 2018). We have also suggested viable food safety solutions for preventing and controlling the food contamination and promoting consumer health.
Asunto(s)
Comida Rápida/microbiología , Microbiología de Alimentos/métodos , Países en Desarrollo , Contaminación de Alimentos/análisis , Manipulación de Alimentos/métodos , Microbiología de Alimentos/normas , Inocuidad de los Alimentos/métodos , Enfermedades Transmitidas por los Alimentos/microbiología , HumanosRESUMEN
Molecular diagnostic tools in the field of food and water quality analysis are becoming increasingly widespread. Usually, based on DNA amplification techniques such as polymerase chain reaction (PCR), these methods are highly sensitive and versatile but require well-equipped laboratories and trained personnel. To reduce analysis time and avoid expensive equipment, isothermal DNA amplification methods for detecting various target organisms have been developed. However, to make molecular diagnostics suitable for low-resource settings and in-field applications, it is crucial to continuously adapt the working steps associated with DNA amplification, namely sample preparation, DNA extraction, and visualization of the results. Many novel approaches have been evaluated in recent years to tackle these challenges, e.g., the use of ionic liquids for the rapid isolation of nucleic acids from organisms relevant for food and water analysis or the integration of entire analytical workflows on microfluidic chips. In any event, the future of applications in the field of isothermal amplification will probably lie in ready-to-use cartridges combined with affordable handheld devices for on-site analysis. This trend article aims to make prospective users more familiar with this technology and its potential for moving molecular diagnostics from the laboratory to the field. Graphical abstract á .
Asunto(s)
ADN/genética , Análisis de los Alimentos , Reacción en Cadena de la Polimerasa/métodos , Calidad del Agua , Análisis Costo-Beneficio , Líquidos Iónicos , Dispositivos Laboratorio en un Chip , Reacción en Cadena de la Polimerasa/economía , Microbiología del AguaRESUMEN
Multi-mycotoxin determination by LC-MS is commonly based on external solvent-based or matrix-matched calibration and, if necessary, the correction for the method bias. In everyday practice, the method bias (expressed as apparent recovery RA), which may be caused by losses during the recovery process and/or signal/suppression enhancement, is evaluated by replicate analysis of a single spiked lot of a matrix. However, RA may vary for different lots of the same matrix, i.e., lot-to-lot variation, which can result in a higher relative expanded measurement uncertainty (U r ). We applied a straightforward procedure for the calculation of U r from the within-laboratory reproducibility, which is also called intermediate precision, and the uncertainty of RA (ur,RA). To estimate the contribution of the lot-to-lot variation to U r , the measurement results of one replicate of seven different lots of figs and maize and seven replicates of a single lot of these matrices, respectively, were used to calculate U r . The lot-to-lot variation was contributing to ur,RA and thus to U r for the majority of the 66 evaluated analytes in both figs and maize. The major contributions of the lot-to-lot variation to ur,RA were differences in analyte recovery in figs and relative matrix effects in maize. U r was estimated from long-term participation in proficiency test schemes with 58%. Provided proper validation, a fit-for-purpose U r of 50% was proposed for measurement results obtained by an LC-MS-based multi-mycotoxin assay, independent of the concentration of the analytes.
Asunto(s)
Cromatografía Liquida/métodos , Micotoxinas/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Incertidumbre , Calibración , Ficus/química , Estándares de Referencia , Reproducibilidad de los Resultados , Zea mays/químicaRESUMEN
Liquid chromatography (LC) coupled with mass spectrometry (MS) is widely used for the determination of mycotoxins in cereals and cereal-based products. In addition to the regulated mycotoxins, for which official control is required, LC-MS is often used for the screening of a large range of mycotoxins and/or for the identification and characterization of novel metabolites. This review provides insight into the LC-MS methods used for the determination of co-occurring mycotoxins with special emphasis on multiple-analyte applications. The first part of the review is focused on targeted LC-MS approaches using cleanup methods such as solid-phase extraction and immunoaffinity chromatography, as well as on methods based on minimum cleanup (quick, easy, cheap, effective, rugged, and safe; QuEChERS) and dilute and shoot. The second part of the review deals with the untargeted determination of mycotoxins by LC coupled with high-resolution MS, which includes also metabolomics techniques to study the fate of mycotoxins in plants.
Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Grano Comestible/metabolismo , Grano Comestible/microbiología , Metabolómica/métodos , Micotoxinas/metabolismo , Espectrometría de Masas en Tándem/métodos , Cromatografía de Afinidad/métodos , Grano Comestible/química , Análisis de los Alimentos/métodos , Hongos/aislamiento & purificación , Hongos/metabolismo , Micotoxinas/análisis , Extracción en Fase Sólida/métodosRESUMEN
African traditional beverages are widely consumed food-grade liquids processed from single or mixed grains (mostly cereals) by simple food processing techniques, of which fermentation tops the list. These beverages are very diverse in composition and nutritional value and are specific to different cultures and countries. The grains from which home-processed traditional beverages are made across Africa are often heavily contaminated with multiple mycotoxins due to poor agricultural, handling, and storage practices that characterize the region. In the literature, there are many reports on the spectrum and quantities of mycotoxins in crops utilized in traditional beverage processing, however, few studies have analyzed mycotoxins in the beverages themselves. The available reports on mycotoxins in African traditional beverages are mainly centered on the finished products with little information on the process chain (raw material to final product), fate of the different mycotoxins during processing, and exposure estimates for consumers. Regulations targeting these local beverages are not in place despite the heavy occurrence of mycotoxins in their raw materials and the high consumption levels of the products in many homes. This paper therefore comprehensively discusses for the 1st time the available data on the wide variety of African traditional beverages, the mycotoxins that contaminate the beverages and their raw materials, exposure estimates, and possible consequent effects. Mycotoxin control options and future directions for mycotoxin research in beverage production are also highlighted.
RESUMEN
Stable isotope labeling (SIL) techniques have the potential to enhance different aspects of liquid chromatography-high-resolution mass spectrometry (LC-HRMS)-based untargeted metabolomics methods including metabolite detection, annotation of unknown metabolites, and comparative quantification. In this work, we present MetExtract II, a software toolbox for detection of biologically derived compounds. It exploits SIL-specific isotope patterns and elution profiles in LC-HRMS(/MS) data. The toolbox consists of three complementary modules: M1 (AllExtract) uses mixtures of uniformly highly isotope-enriched and native biological samples for selective detection of the entire accessible metabolome. M2 (TracExtract) is particularly suited to probe the metabolism of endogenous or exogenous secondary metabolites and facilitates the untargeted screening of tracer derivatives from concurrently metabolized native and uniformly labeled tracer substances. With M3 (FragExtract), tandem mass spectrometry (MS/MS) fragments of corresponding native and uniformly labeled ions are evaluated and automatically assigned with putative sum formulas. Generated results can be graphically illustrated and exported as a comprehensive data matrix that contains all detected pairs of native and labeled metabolite ions that can be used for database queries, metabolome-wide internal standardization, and statistical analysis. The software, associated documentation, and sample data sets are freely available for noncommercial use at http://metabolomics-ifa.boku.ac.at/metextractII .
Asunto(s)
Marcaje Isotópico , Metabolómica/métodos , Programas Informáticos , Estructura MolecularRESUMEN
We report a novel molecular assay, based on helicase-dependent amplification (HDA), for the detection of enterococci as markers for fecal pollution in water. This isothermal assay targets the same Enterococcus 23S rRNA gene region as the existing quantitative polymerase chain reaction (qPCR) assays of U.S. Environmental Protection Agency Methods 1611 and 1609 but can be entirely performed on a simple heating block. The developed Enterococcus HDA assay successfully discriminated 15 enterococcal from 15 non-enterococcal reference strains and reliably detected 48 environmental isolates of enterococci. The limit of detection was 25 target copies per reaction, only 3 times higher than that of qPCR. The applicability of the assay was tested on 30 environmental water sample DNA extracts, simulating a gradient of fecal pollution. Despite the isothermal nature of the reaction, the HDA results were consistent with those of the qPCR reference. Given this performance, we conclude that the developed Enterococcus HDA assay has great potential as a qualitative molecular screening method for resource-limited settings when combined with compatible up- and downstream processes. This amplification strategy can pave the way for developing a new generation of rapid, low-cost, and field-deployable molecular diagnostic tools for water quality monitoring.
Asunto(s)
Enterococcus , Reacción en Cadena de la Polimerasa , Microbiología del Agua , Ambiente , HecesRESUMEN
The increasing number of bioconjugates used for bioanalytical purposes and in pharmaceutical industries has led to an increasing demand for robust quality control of products derived from covalently linking small molecules to proteins. Here we report, for the first time, a matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)-based method to determine the quantity and location of the hapten zearalenone (ZEN) introduced to the carrier protein conalbumin (Con). This bioconjugate is of special interest because of its application in lateral flow immunoassays commercially available for fast testing of food and feed for the presence of ZEN, a common contaminant of all major cereal grains worldwide. Mass spectrometry (MS) analysis of the intact protein turned out to be highly reproducible allowing for the determination of the average hapten load of the carrier protein. In that way an easy and fast method to screen for changes in ZEN load after bioconjugate synthesis was established. For a more detailed hapten load characterization, measurements at the peptide level were of importance. Systematic studies, implementing post-source decay (PSD) and high- and low-energy collision-induced dissociation (CID), showed characteristic fragmentation pattern for three model peptides carrying between one and three lysines (the primary target for the ZEN modification) besides other, less obvious modification sites (serine, arginine and the N-terminus). By this, indicative reporter ions (m/z 203 and 316) and neutral losses (Δm/z 373 and 317) for the ZEN modification in general, plus immonium ions (m/z 87, 142 and 159) for the lysine modification in particular were identified. Based on these findings, proteolytic peptides, tentatively assigned to be modified, were unequivocally confirmed to be affected by bioconjugation. For a protein carrying on average only 2-3 modifications per molecule 29 Lys out of 59 potential modifications sites were actually modified. Considerations taking the protein structure into account showed that the affected Lys were predominantly located on the protein's surface.