RESUMEN
The intracellular human pathogen Shigella invades the colonic epithelium to cause disease. Prior to invasion, this bacterium navigates through different environments within the human body, including the stomach and the small intestine. To adapt to changing environments, Shigella uses the bacterial second messenger cyclic di-GMP (c di-GMP) signaling system, synthesized by diguanylate cyclases (DGCs) encoding GGDEF domains. Shigella flexneri encodes a total of 9 GGDEF or GGDEF-EAL domain enzymes in its genome, but five of these genes have acquired mutations that presumably inactivated the c-di-GMP synthesis activity of these enzymes. In this study, we examined individual S. flexneri DGCs for their role in c-di-GMP synthesis and pathogenesis. We individually expressed each of the four intact DGCs in a S. flexneri strain, where these four DGCs had been deleted (Δ4DGC). We found that the 4 S. flexneri intact DGCs synthesize c-di-GMP at different levels in vitro and during infection of tissue-cultured cells. We also found that dgcF and dgcI expression significantly reduces invasion and plaque formation, and dgcF expression increases acid sensitivity, and that these phenotypes did not correspond with measured c-di-GMP levels. However, deletion of these four DGCs did not eliminate S. flexneri c-di-GMP, and we found that dgcE, dgcQ, and dgcN, which all have nonsense mutations prior to the GGDEF domain, still produce c-di-GMP. These S. flexneri degenerate DGC pseudogenes are expressed as multiple proteins, consistent with multiple start codons within the gene. We propose that both intact and degenerate DGCs contribute to S. flexneri c-di-GMP signaling.
Asunto(s)
Proteínas Bacterianas , GMP Cíclico , Liasas de Fósforo-Oxígeno , Liasas de Fósforo-Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/genética , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/genética , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Shigella flexneri/genética , Shigella flexneri/enzimología , Shigella flexneri/metabolismo , Mutación , Animales , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión GénicaRESUMEN
Multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) poses significant challenges to global tuberculosis (TB) control efforts. Host-directed therapies (HDTs) offer a novel approach to TB treatment by enhancing immune-mediated clearance of Mtb. Prior preclinical studies found that the inhibition of heme oxygenase-1 (HO-1), an enzyme involved in heme metabolism, with tin-protoporphyrin IX (SnPP) significantly reduced mouse lung bacillary burden when co-administered with the first-line antitubercular regimen. Here, we evaluated the adjunctive HDT activity of a novel HO-1 inhibitor, stannsoporfin (SnMP), in combination with a novel MDR-TB regimen comprising a next-generation diarylquinoline, TBAJ-876 (S), pretomanid (Pa), and a new oxazolidinone, TBI-223 (O) (collectively, SPaO), in Mtb-infected BALB/c mice. After 4 weeks of treatment, SPaO + SnMP 5mg/kg reduced mean lung bacillary burden by an additional 0.69 log10 (P = 0.01) relative to SPaO alone. As early as 2 weeks post-treatment initiation, SnMP adjunctive therapy differentially altered the expression of pro-inflammatory cytokine genes and CD38, a marker of M1 macrophages. Next, we evaluated the sterilizing potential of SnMP adjunctive therapy in a mouse model of microbiological relapse. After 6 weeks of treatment, SPaO + SnMP 10mg/kg reduced lung bacterial burdens to 0.71 ± 0.23 log10 colony-forming units (CFUs), a 0.78 log-fold greater decrease in lung CFU compared to SpaO alone (P = 0.005). However, adjunctive SnMP did not reduce microbiological relapse rates after 5 or 6 weeks of treatment. SnMP was well tolerated and did not significantly alter gross or histological lung pathology. SnMP is a promising HDT candidate requiring further study in combination with regimens for drug-resistant TB.
Asunto(s)
Metaloporfirinas , Mycobacterium tuberculosis , Protoporfirinas , Tuberculosis Resistente a Múltiples Medicamentos , Animales , Ratones , Metaloporfirinas/uso terapéutico , Hemo-Oxigenasa 1 , Modelos Animales de Enfermedad , Antituberculosos/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , RecurrenciaRESUMEN
Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the ß-glucocerebrosidase (GCase) GBA gene, which result in macrophage dysfunction. CRISPR (clustered regularly interspaced short palindromic repeats) editing of the homozygous L444P (1448TâC) GBA mutation in type 2 GD (GBA-/-) human-induced pluripotent stem cells (hiPSCs) yielded both heterozygous (GBA+/-) and homozygous (GBA+/+) isogenic lines. Macrophages derived from GBA-/-, GBA+/- and GBA+/+ hiPSCs showed that GBA mutation correction restores normal macrophage functions: GCase activity, motility, and phagocytosis. Furthermore, infection of GBA-/-, GBA+/- and GBA+/+ macrophages with the Mycobacterium tuberculosis H37Rv strain showed that impaired mobility and phagocytic activity were correlated with reduced levels of bacterial engulfment and replication suggesting that GD may be protective against tuberculosis.
Asunto(s)
Enfermedad de Gaucher , Células Madre Pluripotentes Inducidas , Mycobacterium tuberculosis , Humanos , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Enfermedad de Gaucher/genética , Mutación , Macrófagos/metabolismoAsunto(s)
Células Supresoras de Origen Mieloide/efectos de los fármacos , Quinolonas/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Tuberculosis/inmunología , Animales , Modelos Animales de Enfermedad , Ratones , Células Supresoras de Origen Mieloide/inmunología , Quinolonas/inmunología , Linfocitos T Reguladores/inmunologíaRESUMEN
The intracellular human pathogen Shigella invades the colonic epithelium to cause disease. Prior to invasion, this bacterium navigates through different environments within the human body, including the stomach and the small intestine. To adapt to changing environments, Shigella uses the bacterial second messenger c-di-GMP signaling system, synthesized by diguanylate cyclases (DGCs) encoding GGDEF domains. Shigella flexneri encodes a total of 9 GGDEF or GGDEF-EAL domain enzymes in its genome, but 5 of these genes have acquired mutations that presumably inactivated the c-di-GMP synthesis activity of these enzymes. In this study, we examined individual S. flexneri DGCs for their role in c-di-GMP synthesis and pathogenesis. We individually expressed each of the 4 intact DGCs in an S. flexneri strain where these 4 DGCs had been deleted (Δ4DGC). We found that the 4 S. flexneri intact DGCs synthesize c-di-GMP at different levels in vitro and during infection of tissue-cultured cells. We also found that dgcF and dgcI expression significantly reduces invasion and plaque formation, and dgcF expression increases acid sensitivity, and that these phenotypes did not correspond with measured c-di-GMP levels. However, deletion of these 4 DGCs did not eliminate S. flexneri c-di-GMP, and we found that dgcE, dgcQ, and dgcN , which all have nonsense mutations prior to the GGDEF domain, still produce c-di-GMP. These S. flexneri degenerate DGC genes are expressed as multiple proteins, consistent with multiple start codons within the gene. We propose that both intact and degenerate DGCs contribute to S. flexneri c-di-GMP signaling.
RESUMEN
Host cytosolic sensing of Mycobacterium tuberculosis (M. tuberculosis) RNA by the RIG-I-like receptor (RLR) family perturbs innate immune control within macrophages; however, a distinct role of MDA5, a member of the RLR family, in M. tuberculosis pathogenesis has yet to be fully elucidated. To further define the role of MDA5 in M. tuberculosis pathogenesis, we evaluated M. tuberculosis intracellular growth and innate immune responses in WT and Mda5-/- macrophages. Transfection of M. tuberculosis RNA strongly induced proinflammatory cytokine production in WT macrophages, which was abrogated in Mda5-/- macrophages. M. tuberculosis infection in macrophages induced MDA5 protein expression, accompanied by an increase in MDA5 activation as assessed by multimer formation. IFN-γ-primed Mda5-/- macrophages effectively contained intracellular M. tuberculosis proliferation to a markedly greater degree than WT macrophages. Further comparisons of WT versus Mda5-/- macrophages revealed that during M. tuberculosis infection MDA5 contributed to IL-1ß production and inflammasome activation and that loss of MDA5 led to a substantial increase in autophagy. In the mouse TB model, loss of MDA5 conferred host survival benefits with a concomitant reduction in M. tuberculosis bacillary burden. These data reveal that loss of MDA5 is host protective during M. tuberculosis infection in vitro and in vivo, suggesting that M. tuberculosis exploits MDA5 to subvert immune containment.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Inmunidad Innata , Macrófagos , ARNRESUMEN
Despite numerous advances in tuberculosis (TB) drug development, long treatment durations have led to the emergence of multidrug resistance, which poses a major hurdle to global TB control. Shortening treatment time therefore remains a top priority. Host-directed therapies that promote bacterial clearance and/or lung health may improve the efficacy and treatment duration of tuberculosis antibiotics. We recently discovered that inhibition of the integrated stress response, which is abnormally activated in tuberculosis and associated with necrotic granuloma formation, reduced bacterial numbers and lung inflammation in mice. Here, we evaluated the impact of the integrated stress response (ISR) inhibitor ISRIB, administered as an adjunct to standard tuberculosis antibiotics, on bacterial clearance, relapse, and lung pathology in a mouse model of tuberculosis. Throughout the course of treatment, ISRIB robustly lowered bacterial burdens compared to the burdens with standard TB therapy alone and accelerated the time to sterility in mice, as demonstrated by significantly reduced relapse rates after 4 months of treatment. In addition, mice receiving adjunctive ISRIB tended to have reduced lung necrosis and inflammation. Together, our findings identify the ISR pathway as a promising therapeutic target with the potential to shorten TB treatment durations and improve lung health. IMPORTANCE Necrosis of lung lesions is a hallmark of tuberculosis (TB) that promotes bacterial growth, dissemination, and transmission. This process is driven by the persistent hyperactivation of the integrated stress response (ISR) pathway. Here, we show that adjunctive ISR inhibition during standard antibiotic therapy accelerates bacterial clearance and reduces immunopathology in a clinically relevant mouse model of TB, suggesting that host-directed therapies that de-escalate these pathological stress responses may shorten TB treatment durations. Our findings present an important conceptual advance toward overcoming the challenge of improving TB therapy and lowering the global burden of disease.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Necrosis , Antibacterianos/uso terapéutico , Recurrencia , Antituberculosos/uso terapéuticoRESUMEN
Multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) poses significant challenges to global tuberculosis (TB) control efforts. Host-directed therapies (HDT) offer a novel approach for TB treatment by enhancing immune-mediated clearance of Mtb. Prior preclinical studies found that inhibition of heme oxygenase-1 (HO-1), an enzyme involved in heme metabolism, with tin-protoporphyrin IX (SnPP) significantly reduced mouse lung bacillary burden when co-administered with the first-line antitubercular regimen. Here we evaluated the adjunctive HDT activity of a novel HO-1 inhibitor, stannsoporfin (SnMP), in combination with a novel MDR-TB regimen comprising a next-generation diarylquinoline, TBAJ-876 (S), pretomanid (Pa), and a new oxazolidinone, TBI-223 (O) (collectively, SPaO) in Mtb-infected BALB/c mice. After 4 weeks of treatment, SPaO + SnMP 5 mg/kg reduced mean lung bacillary burden by an additional 0.69 log10 (P=0.01) relative to SPaO alone. As early as 2 weeks post-treatment initiation, SnMP adjunctive therapy differentially altered the expression of pro-inflammatory cytokine genes, and CD38, a marker of M1 macrophages. Next, we evaluated the sterilizing potential of SnMP adjunctive therapy in a mouse model of microbiological relapse. After 6 weeks of treatment, SPaO + SnMP 10 mg/kg reduced lung bacterial burdens to 0.71 ± 0.23 log10 CFU, a 0.78 log-fold greater decrease in lung CFU compared to SpaO alone (P=0.005). However, adjunctive SnMP did not reduce microbiological relapse rates after 5 or 6 weeks of treatment. SnMP was well tolerated and did not significantly alter gross or histological lung pathology. SnMP is a promising HDT candidate requiring further study in combination with regimens for drug-resistant TB.
RESUMEN
The antibiotic pyrazinamide (PZA) is a cornerstone of tuberculosis (TB) therapy that shortens treatment durations by several months despite being only weakly bactericidal. Intriguingly, PZA is also an anti-inflammatory molecule shown to specifically reduce inflammatory cytokine signaling and lesion activity in TB patients. However, the target and clinical importance of PZA's host-directed activity during TB therapy remain unclear. Here, we identify the host enzyme Poly(ADP-ribose) Polymerase 1 (PARP1), a pro-inflammatory master regulator strongly activated in TB, as a functionally relevant host target of PZA. We show that PZA inhibits PARP1 enzymatic activity in macrophages and in mice where it reverses TB-induced PARP1 activity in lungs to uninfected levels. Utilizing a PZA-resistant mutant, we demonstrate that PZA's immune-modulatory effects are PARP1-dependent but independent of its bactericidal activity. Importantly, PZA's bactericidal efficacy is impaired in PARP1-deficient mice, suggesting that immune modulation may be an integral component of PZA's antitubercular activity. In addition, adjunctive PARP1 inhibition dramatically reduces inflammation and lesion size in mice and may be a means to reduce lung damage and shorten TB treatment duration. Together, these findings provide insight into PZA's mechanism of action and the therapeutic potential of PARP1 inhibition in the treatment of TB.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Ratones , Pirazinamida/farmacología , Pirazinamida/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Pruebas de Sensibilidad Microbiana , Poli(ADP-Ribosa) Polimerasa-1RESUMEN
Lengthy tuberculosis (TB) treatment is required to overcome the ability of a subpopulation of persistent Mycobacterium tuberculosis (Mtb) to remain in a non-replicating, antibiotic-tolerant state characterized by metabolic remodeling, including induction of the RelMtb-mediated stringent response. We developed a novel therapeutic DNA vaccine containing a fusion of the relMtb gene with the gene encoding the immature dendritic cell-targeting chemokine, MIP-3α/CCL20. To augment mucosal immune responses, intranasal delivery was also evaluated. We found that intramuscular delivery of the MIP-3α/relMtb (fusion) vaccine or intranasal delivery of the relMtb (non-fusion) vaccine potentiate isoniazid activity more than intramuscular delivery of the DNA vaccine expressing relMtb alone in a chronic TB mouse model (absolute reduction of Mtb burden: 0.63 log10 and 0.5 log10 colony-forming units, respectively; P=0.0002 and P=0.0052), inducing pronounced Mtb-protective immune signatures. The combined approach involving intranasal delivery of the DNA MIP-3α/relMtb fusion vaccine demonstrated the greatest mycobactericidal activity together with isoniazid when compared to each approach alone (absolute reduction of Mtb burden: 1.13 log10, when compared to the intramuscular vaccine targeting relMtb alone; P<0.0001), as well as robust systemic and local Th1 and Th17 responses. This DNA vaccination strategy may be a promising adjunctive approach combined with standard therapy to shorten curative TB treatment, and also serves as proof of concept for treating other chronic bacterial infections.
Asunto(s)
Tuberculosis , Vacunas de ADN , Animales , Antibacterianos , Células Dendríticas , Isoniazida , RatonesRESUMEN
Following infection with Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), most human hosts are able to contain the infection and avoid progression to active TB disease through expression of a balanced, homeostatic immune response. Proinflammatory mechanisms aiming to kill, slow and sequester the pathogen are key to a successful host response. However, an excessive or inappropriate pro-inflammatory response may lead to granuloma enlargement and tissue damage, which may prolong the TB treatment duration and permanently diminish the lung function of TB survivors. The host also expresses certain anti-inflammatory mediators which may play either beneficial or detrimental roles depending on the timing of their deployment. The balance between the timing and expression levels of pro- and anti-inflammatory responses plays an important role in the fate of infection. Interestingly, M. tuberculosis appears to manipulate both sides of the human immune response to remodel the host environment for its own benefit. Consequently, therapies which modulate either end of this spectrum of immune responses at the appropriate time may have the potential to improve the treatment of TB or to reduce the formation of permanent lung damage after microbiological cure. Here, we highlight host-directed TB therapies targeting pro- or anti-inflammatory processes that have been evaluated in pre-clinical models. The repurposing of already available drugs known to modulate these responses may improve the future of TB therapy.
Asunto(s)
Antiinflamatorios/uso terapéutico , Interacciones Huésped-Patógeno/efectos de los fármacos , Inflamación/tratamiento farmacológico , Tuberculosis/tratamiento farmacológico , Tuberculosis/inmunología , Antituberculosos/uso terapéutico , Ensayos Clínicos como Asunto , Reposicionamiento de Medicamentos , Humanos , Mycobacterium tuberculosis/inmunología , Transducción de Señal , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/inmunologíaRESUMEN
Low thyroid hormone (TH) conditions caused by a variety of prenatal and perinatal problems have been shown to alter postnatal regulatory thyrotropin (TSH) responsiveness to TH in humans and rodents. The mechanisms underlying this pituitary TH resistance remain unknown. Here we use the evolutionarily conserved zebrafish model to examine the effects of low TH on thyrotrope development and function. Zebrafish were exposed to the goitrogen 6-propyl-2-thiouracil (PTU) to block TH synthesis, and this led to an approximately 50% increase in thyrotrope numbers and an 8- to 10-fold increase in tshb mRNA abundance in 2-week-old larvae and 1-month-old juveniles. Thyrotrope numbers returned to normal 3 weeks after cessation of PTU treatment, demonstrating that these effects were reversible and revealing substantial plasticity in pituitary-thyroid axis regulation. Using a T4 challenge assay, we found that development under low-TH conditions did not affect the ability of T4 to suppress tshb mRNA levels despite the thyrotrope hyperplasia that resulted from temporary low-TH conditions. Together, these studies show that low developmental TH levels can lead to changes in thyrotrope number and function, providing a possible cellular mechanism underlying elevated TSH levels seen in neonates with either permanent or transient congenital hypothyroidism.
Asunto(s)
Hipófisis/efectos de los fármacos , Hipófisis/embriología , Hormonas Tiroideas/farmacología , Tirotrofos/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Hipotiroidismo Congénito/complicaciones , Hipotiroidismo Congénito/embriología , Hipotiroidismo Congénito/genética , Hipotiroidismo Congénito/patología , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Organogénesis/efectos de los fármacos , Hipófisis/citología , Hipófisis/patología , Propiltiouracilo/farmacología , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Tirotrofos/citología , Tirotrofos/fisiología , Tirotropina de Subunidad beta/genética , Pez Cebra/embriología , Pez Cebra/genéticaAsunto(s)
Comunicación , Neoplasias/enfermería , Relaciones Enfermero-Paciente , Estimulación Física/métodos , Tacto , Estimulación Acústica/enfermería , Concienciación , Baños/enfermería , Terapia Combinada/enfermería , Humanos , Cinestesia , Higiene Bucal/enfermería , Orientación , Estimulación Luminosa/métodos , Vibración/uso terapéuticoRESUMEN
Naturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is. We used immunohistochemical detection of activated caspase-3 to identify dying cells in the brains of male and female mice from postnatal day (P) 1 to P11. Cell death density, total number of dying cells, and regional volume were determined in 16 regions of the hypothalamus and ventral forebrain (the anterior hypothalamus, arcuate nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus, and ventromedial nucleus of the hypothalamus; the basolateral, central, and medial amygdala; the lateral and principal nuclei of the bed nuclei of the stria terminalis; the caudate-putamen; the globus pallidus; the lateral septum; and the islands of Calleja). All regions showed a significant effect of age on cell death. The timing of peak cell death varied between P1 to P7, and the average rate of cell death varied tenfold among regions. Several significant sex differences in cell death and/or regional volume were detected. These data address large gaps in the developmental literature and suggest interesting region-specific differences in the prevalence and timing of cell death in the hypothalamus and ventral forebrain.
Asunto(s)
Envejecimiento/fisiología , Muerte Celular/fisiología , Hipotálamo/anatomía & histología , Hipotálamo/citología , Prosencéfalo/anatomía & histología , Prosencéfalo/citología , Animales , Atlas como Asunto , Calbindinas/metabolismo , Caspasa 3/metabolismo , Activación Enzimática/fisiología , Femenino , Hipotálamo/crecimiento & desarrollo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Prosencéfalo/crecimiento & desarrollo , Caracteres Sexuales , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/fisiologíaRESUMEN
The circadian mutation duper in Syrian hamsters shortens the free-running circadian period (τ(DD)) by 2 hours when expressed on a tau mutant (τ(ss)) background and by 1 hour on a wild-type background. We have examined the effects of this mutation on phase response curves and entrainment. In contrast to wild types, duper hamsters entrained to 14L:10D with a positive phase angle. Super duper hamsters (expressing duper on a τ(ss) background) showed weak entrainment, while τ(ss) animals either completely failed to entrain or showed sporadic entrainment with episodes of relative coordination. As previously reported, wild-type and τ(ss) hamsters show low amplitude resetting in response to 15-minute light pulses after short-term (10 days) exposure to DD. In contrast, super duper hamsters show high amplitude resetting. This effect is attributable to the duper allele, as hamsters carrying duper on a wild-type background also show large phase shifts. Duper mutants that were born and raised in DD also showed high amplitude resetting in response to 15-minute light pulses, indicating that the effect of the mutation on PRC amplitude is not an aftereffect of entrainment to 14L:10D. Hamsters that are heterozygous for duper do not show amplified resetting curves, indicating that for this property, as for determination of free-running period, the mutant allele is recessive. In a modified Aschoff type II protocol, super duper and duper hamsters show large phase shifts as soon as the second day of DD. Despite the amplification of the PRC in super duper hamsters, the induction of Period1 gene expression in the SCN by light is no greater in these mutants than in wild-type animals. Period2 expression in the SCN did not differ between super duper and wild-type hamsters exposed to light at CT15, but albumin site D-binding protein (Dbp) mRNA showed higher basal levels and greater light induction in the SCN of super duper compared to wild-type animals. These results indicate that the duper mutation alters the amplitude of the circadian oscillator and further distinguish it from the tau mutation.
Asunto(s)
Ritmo Circadiano , Luz , Mutación , Animales , Cricetinae , Expresión Génica , Heterocigoto , Mesocricetus , Actividad Motora , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/efectos de la radiación , Proteínas tau/genéticaRESUMEN
Three animals born to homozygous tau mutant (τ(ss), "super short") Syrian hamsters showed extremely short free-running periods of locomotor activity (τ(DD) of approximately 17.8 hours). Inbreeding produced 33 such "super duper" animals, which had a τ(DD) of 18.09 ± 0.05 hours, which was shorter than that of τ(ss) hamsters (20.66 ± 0.07 hours, p < 0.001). To test the hypothesis that a gene (Duper) is responsible for a 2-hour shortening of τ(DD), we backcrossed super duper hamsters to unrelated τ(ss) animals. The F(1) pups uniformly had a τ(DD) similar to that of τ(ss) hamsters (19.89 ± 0.15 hours), but F(2) animals showed a 1:1 ratio of the 18- to 20-hour phenotypes. In contrast, the F(1) of a cross between super duper hamsters and τ(ss) animals presumed heterozygous for duper showed a 1:1 ratio of 18- to 20-hour phenotypes, and inbreeding of the super duper F(1) offspring uniformly produced F(2) pups with extremely short τ(DD) (17.86 ± 0.5 hours). We isolated the duper mutation on a wild-type background through crossing of super duper with wild-type animals. Restriction digests identified short-period F(2) pups that lack the mutant CK1ε allele, and these animals had a mean τ(DD) of 23.11 ± 0.04 hours. τ(DD) of duper hamsters born and raised in DD was significantly shorter than in hamsters raised in 14L:10D (21.92 ± 0.12 hours, p < 0.0001). τ(DD) shortened twice as much in τ(s) and τ(ss) hamsters than in wild-type animals that were homozygous for duper, indicating the presence of epistatic interactions. Assortment of phenotypes in the F(2) generation fit the expected distribution for expression of duper as recessive (χ(2) = 6.41, p > 0.1). Neither CK1ε nor CK1δ coding region base sequences differed between super duper and τ(ss) hamsters. The growth rate of super duper mutants is similar to that of τ(ss) animals but slightly but significantly reduced at particular postweaning time points. We conclude that duper represents a new mutation that substantially reduces τ(DD) and has significant effects on physiology and metabolism.