Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Acoust Soc Am ; 145(1): EL79, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30710982

RESUMEN

This paper proposes a strategy to broaden complete bandgap attenuating flexural and longitudinal modes, and to shift them to lower frequencies by spatially folding designs. Numerical simulations show that the V-folded acoustic black hole beam exhibits an ultra-wide complete bandgap below 1 kHz due to longitudinal-flexural waveform transformation, and experimental results verify this finding. The proposed folded beams are easy-to-fabricate, of compact dimensions, and exhibit excellent wave attenuation functionality that makes them promising for low-frequency vibration reduction and wave attenuation applications.

2.
J Vis Exp ; (208)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39007608

RESUMEN

Viscoelastic behavior can be beneficial in enhancing the unprecedented dynamics of polymer metamaterials or, in contrast, negatively impacting their wave control mechanisms. It is, therefore, crucial to properly characterize the viscoelastic properties of a polymer metamaterial at its working frequencies to understand viscoelastic effects. However, the viscoelasticity of polymers is a complex phenomenon, and the data on storage and loss moduli at ultrasonic frequencies are extremely limited, especially for additively manufactured polymers. This work presents a protocol to experimentally characterize the viscoelastic properties of additively manufactured polymers and to use them in the numerical analysis of polymer metamaterials. Specifically, the protocol includes the description of the manufacturing process, experimental procedures to measure the thermal, viscoelastic, and mechanical properties of additively manufactured polymers, and an approach to use these properties in finite-element simulations of the metamaterial dynamics. The numerical results are validated in ultrasonic transmission tests. To exemplify the protocol, the analysis is focused on acrylonitrile butadiene styrene (ABS) and aims at characterizing the dynamic behavior of a simple metamaterial made from it by using fused deposition modeling (FDM) three-dimensional (3D) printing. The proposed protocol will be helpful for many researchers to estimate viscous losses in 3D-printed polymer elastic metamaterials that will improve the understanding of material-property relations for viscoelastic metamaterials and eventually stimulate the use of 3D-printed polymer metamaterial parts in various applications.


Asunto(s)
Elasticidad , Viscosidad , Impresión Tridimensional , Butadienos/química , Polímeros/química , Resinas Acrílicas/química , Análisis de Elementos Finitos , Materiales Manufacturados , Poliestirenos
3.
Sci Rep ; 10(1): 16403, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009435

RESUMEN

The focus of this paper is on elastic metamaterials characterised by the presence of wide sub-wavelength band gap. In most cases, such mechanical property is strictly connected to the periodic repetition of the unit cell. Nonetheless, the strict periodicity requirement could represent a drawback. In this paper, we present a design strategy for aperiodic elastic metamaterials in order to achieve the same performances as for the periodic counterparts. This is done by exploiting the concept of separation of modes for different building blocks, arranged in aperiodic fashion. A theoretical explanation is provided, as well as numerical simulations; the concept is validated by means of a set of experimental tests on prototypes that are realized via additive manufacturing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA